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SUMMARY

This work shows how a kinetic process is formed in a dynamic system that is
in a non-stationary coupling with the environment. It is assumed that the envi-
ronment has a large number of degrees of freedom and therefore transitions in
a dynamic system do not change the state of the environment. However, due
to the openness of a dynamic system, the environment is capable of modifying
both the states of the system and its energy levels. We are considering a quan-
tum dynamic system, where the exchange of energy between the system and
the environment is carried out through vibrational quanta (phonons). Using the
method of nonequilibrium statistical mechanics, kinetic equations are obtained
that describe the time evolution of the density matrix of a dynamic system un-
der conditions of strong (polaron) coupling with vibrational modes of both the
environment and the system. The difference from a similar type of research is
that the coupling between the electronic states of the system and its vibration
states is assumed to be time-dependent. We proposed a unitary-transformation,
which made it possible to take into account this non-stationary coupling directly
in the operator responsible for transitions between states of the system. This
opened up the possibility of using the perturbation method to derive the master
equation for the probabilities of occupying system states. As an example of the
application of non-stationary polaron transformation, the kinetics of establishing
the probabilities of occupation of electronic states of an open TLS is considered.

▶ E.G. Petrov, Ye.V. Shevchenko, V.O. Leonov, V.I. Teslenko “Kinetics in the
two-level system with strong time-dependent coupling of its states to the
phonon bath: spin-boson description”. Ukr. J. Phys. 69, 552 (2024).

MODEL AND BASIC EQUATIONS

We will consider an open dynamic quantum system S, in which the nuclear
equilibrium position q0n, associated with motion along the normal coordinate q,
depends on the nth electronic state of the system. System S interacts with en-
vironment E, which does not change its electronic state, so each j th equilibrium
position of the nuclei Q0j corresponds to the j th normal coordinate of motion
in a fixed electronic state of the environment. It is assumed that the nuclei in
systems S and E have small deviations ∆qn and ∆Qj from their equilibrium
positions, so that in the harmonic approximation the noted deviations are char-
acterized by the corresponding frequencies ωn and ωj .

The main features of the temporal behavior of an open quantum dynamical
system are determined by the relations between the matrix elements Vnn′ of
transitions between the electronic states of the system and the couplings κn of
each nth state to vibrational states of the environment.The influence of external
dc and ac fields is taken into account, as a rule, in the energies En = En(t) of
the system and quantities Vnn′ = Vnn′(t). In this work we focus on the situa-
tion when the kinetics in an open system is controlled by the couplings κn(t)
(caused, for example, by external forces). Having expanded the energy into
small deviations ∆qn and ∆Qj , after introducing the Bose operators of creation
(b+

j ) and annihilation (bj) of the phonon mode j for the environment and similar
operators (b+ and b) for a single mode of a dynamical system, we arrive at the
following form of the Hamiltonian for the entire system S + E :

HSE(t) =
∑
n,n′

{[En(t) + κn(t)(b+ + b) + ℏωn(b+b + 1/2)

+
∑

j

κnj(b+
j + bj)]δn,n′ + (1 − δn,n′)Vnn′(t)}|n⟩⟨n′|

+
∑

j

ℏωj(b+
j bj + 1/2) .

CHARACTERISTIC TIMES

Let τtr be the characteristic time of a kinetic process responsible for the es-
tablishment of a stationary regime in S, and τrel is the characteristic time at
which the Boltzmann distribution within the vibrational levels of electronic terms
is maintained in both systems E and S. Besides, there exists also the char-
acteristic time τfield ∼ ω−1 related to the oscillations of an external ac field of
frequency ω.

In this work, we consider kinetics on a time scale of the order of ∆t ∼ τtr,
satisfying the inequalities

τtr ≫ τfield ≫ τrel .

POLARON TRANSFORM AT TIME-DEPENDENT COUPLING
TO PHONONS

Since τtr → ∞ for Vnn′(t) → 0, we can conclude that the absolute value of
Vnn′(t) is significantly less than the absolute value of κn(t). Consequently, the
electronic states of a dynamic system can participate in the transition process
as polaron states. To see the role of these states in kinetics, we use the trans-
form operation

H̃SE(t) = R̂(t)HSE(t)R̂−1(t)− iℏR̂(t)
d
dt

R̂−1(t) ,

In our case, we propose a unitary transformation matrix in the following form

R̂(t) =
∑

n

Ŝn(t)|n⟩⟨n| ,

Ŝn(t) = exp [ξn(t)b+ − ξn(t)b] exp
∑

j

(κj/ℏωj)(b+
j − bj) .

Unlike the well-known standard unitary polaron transform, the proposed trans-
form is specified by a time-dependent matrix. This dependence is concentrated
in the quantities ξn(t) satisfying the equation which follows from the fact that the
Hamiltonian H̃SE(t) should not contain linear terms proportional to the operators
b+ or b.

i
dξn(t)

dt
= ωnξn(t)− κn(t) .

We obtain
H̃SE(t) = H̃0(t) + Hint(t) + HB ,

where
H̃0(t) =

∑
n

Ẽn(t)|n⟩⟨n| ,

Hint(t) =
∑
n,n′

(1 − δn,n′)Ṽnn′(t)|n⟩⟨n′| .

HB =
∑
λ

ℏωλ(b+
λ bλ + 1/2) .

The energy of an open system

Ẽn(t) = En(t) + E (env)
r +∆En(t) .

receives an addition in the form of reorganization energy

Er =
∑

j

(κ2
j /ℏωj)

due to the coupling to environmental vibrations, as well as a time-dependent
addition

∆En(t) = ℏωn|ξn(t)|2 − κn(t)(ξn(t) + ξ∗n(t))

+
iℏ
2
[
ξn(t)

dξ∗n(t)
dt

− dξn(t)
dt

ξ∗n(t)
]
.

Phonon creation and annihilation operators included directly in the ”dressed”
operator

V̂nn′(t) = Ŝn(t)Vnn′(t)Ŝ−1
n′ (t) ,

which is responsible for phonon accompanying transitions in a dynamic system.
Due to the polaron effect, in which the ”phonon coat” weakens transitions be-
tween electronic states of an open quantum system S, mean values of V̂nn′(t)
are much smaller than those of Vnn′(t), so they can be considered as a pertur-
bation, which allows us to use the Born approximation.

BALANCE-LIKE KINETIC EQUATIONS FOR AN OPEN
SYSTEM AT POLARON COUPLING

Using the unitary operator R̂(t), the Liouville equation transforms into the
˙̃ρSE(t) = −(i/ℏ)[H̃SE(t), ρ̃SE(t)], with the Hamiltonian H̃SE, and the nonequilib-
rium density operators are transformed so that ρSE(t) = R̂(t)ρ̃SE(t)R̂−1(t). In
such a way, the occupation probability can be calculated using the expression
Pn(t) = tr(ρ̃SE(t)|n⟩⟨n|). This value coincides with the diagonal element of the
nonequilibrium density matrix ρ̃SE(t), specified by its elements ⟨n|ρ̃SE(t)|n′⟩.

We can use the Born approximation in deviations

∆V̂nn′(t) = Vnn′(t)
(
Ŝn(t)Ŝ−1

n′ (t)− ⟨Ŝn(t)Ŝ−1
n′ (t)⟩

)
,

Considering also that in Born approximation the decoupling ρ̃SE(t) ≈ ρ(t)ρB is
well satisfied, we come to to the following integro-differential equation for the
density matrix of an open quantum system, ”dressed” by bath phonons:

ρ̇(t) = −iLS(t)ρ(t)−
∫ t

0
dt ′TrB

(
LV (t)D(t , t ′)LV (t ′)ρBρ(t ′)

)
where

D(t , t ′) = T̂ exp [−i
∫ t

t ′
dτ(LS(τ) + LB)]

is the evolution unitary matrix (T̂ is the Dayson’s time-ordering operator).
LS(t) ≡ ℏ−1[HS(t), ...], LB ≡ ℏ−1[HB, ...], and LV (t) ≡ ℏ−1[∆Hint(t), ...] are the
Liouville operators related to a modified Hamiltonian of the quantum system

HS(t) = H0(t) + ⟨Hint(t)⟩

and the modified interaction

∆Hint(t) = Hint(t)− ⟨Hint(t)⟩ .

If the rotational wave approximation is fulfilled, then the mixing of diagonal ρnn(t)
and non-diagonal ρnm(t) elements of the density matrix becomes insignificant,
and we arrive at the following balance-like equations for the probabilities of oc-
cupation of the states of a dynamic system:

Ṗn(t) = − 1
ℏ2

∑
n′

∫ t

0
Γnn,n′n′(t , t ′)Pn′(t ′)dt ′ .

Γnn,n′n′(t , t ′) – the elements of the relaxation supermatrix.

Γnm,n′m′(t , t ′) =
∑

rr ′

[〈
∆Vnr (t)∆V τ

r ′n′(t ′)
〉
Urr ′(t , t ′)U∗

mm′(t , t ′)
+
〈
∆V τ

m′r ′(t
′)∆Vrm(t)

〉
Unn′(t , t ′)U∗

rr ′(t , t
′)

−
〈
∆Vrm(t)∆V τ

r ′n′(t ′)
〉
Unr ′(t , t ′)U∗

rm′(t , t ′)
−
〈
∆V τ

m′r ′(t
′)∆Vnr (t)

〉
Urn′(t , t ′)U∗

mr ′(t , t
′)
]

are determined through correlation functions of type

Kab,a′b′(t , t ′) =
〈
∆V̂ab(t)∆V̂ τ

a′b′(t ′)
〉
,

Kab,a′b′(t ′, t) =
〈
∆V̂ τ

ab(t
′)∆V̂a′b′(t)

〉
with ∆V̂ τ

ab(t
′) = e−iHBτ/ℏ∆V̂ab(t ′)eiHBτ/ℏ, where τ = t − t ′. For those open sys-

tems where average values ⟨V̂nn′(t)⟩ disappear and, therefore, ⟨Hint(t)⟩ = 0 the
Hamiltonian HS(t) is diagonal for any t . This reduces the elements Uab(t , t ′) =
⟨a|ÛS(t , t ′)|b⟩ of unitary matrix to a simple form

Uab(t , t ′) = δa,b exp

[
−(i/ℏ)

∫ t

t ′
Ẽa(τ

′)dτ ′
]
.

MASTER EQUATION FOR TWO-LEVEL SYSTEM UNDER
NONSTATIONARY COUPLING WITH A PHONON BATH

Applying kinetic equations to the open TLS, we must take into account the fact
that n = 1,2. Thus, transitions in TLS are associated with matrix elements
V12(t) and V21(t), as well as couplings κ1(t) and κ2(t). We will assume that the
matrix elements do not depend on time and there is no external ac field. This
means that in the considered TLS the time dependence is concentrated only
in the couplings κn(t). Below, based on the spin-boson version of TLS, we set
Vnn′ = ℏv , κ1(t)/2 = −κ2(t)/2 = κ(t) and ω1 = ω2 = ω0.

For simplicity, we assume that the average ⟨V̂nn′(t)⟩, is equal to zero. This
means that in the relaxation supermatrix ∆V̂ab(t) = V̂ab(t) = ℏvŜa(t)Ŝ−1

b (t).
Taking this circumstance into account, we arrive at balance equations for the
occupation probabilities P1(t) and P2(t), where quantities Γnn,n′n′(t , t ′) are de-
termined through the correlation functions Kab,ba(t , t ′) and Kab,ba(t ′, t). In the
spin-boson description, the difference in occupation probabilities

σz(t) = P1(t)− P2(t)

is usually analyzed. Taking into account the normalization condition P1(t) +
P2(t) = 1, we arrive at the equation:

σ̇z(t) = −
∫ t

0
g(t , t − τ)σz(t − τ)dτ −

∫ t

0
f (t , t − τ)dτ

where g(t , t ′) = (1/2ℏ2)(Γ1(t , t ′) + Γ2(t , t ′)), f (t , t ′) = (1/2ℏ2)(Γ1(t , t ′)− Γ2(t , t ′))
and

Γn(t , t ′) = Knn′,n′n(t , t ′)eiωnn′τ + Knn′,n′n(t ′, t)eiωn′nτ .

The time-independent frequency ωnn′ = (1/ℏ)(En − En′) of the n → n′ transition
reflects the fact that in the spin-boson version of TLS, the reorganization ener-
gies and time-dependent additions are the same for n = 1 and n = 2. Therefore,
in the absence of the ac field according we have Ẽn(t)− Ẽn′(t) = En − En′.
Correlation functions

g(t , t − τ) = v2(Λ(t , t − τ) + Λ∗(t , t − τ)
)
cosωsτ ,

f (t , t − τ) = −iv2(Λ(t , t − τ)− Λ∗(t , t − τ)
)
sinωsτ .

Here, ωs = ω12 ≥ 0 is the transition frequency in the open system S and

Λ(t , t − τ) = e−GB(τ)e−Gs(t,t−τ)

is a factor reflecting the influence of the environment (phonon bath) on transition
rates. In this equation the function

GB(τ) =
∑

j

α2
j [(2n(ωj) + 1)(1 − cosωjτ) + i sinωjτ ] ,

where αj = κj/ℏω, is well known in the spin-boson model. As for the function

Gs(t , t − τ) = (1/2)(|ξ(t)|2 + |ξ(t − τ)|2)(2n(ω0)) + 1)
−
[
(n(ω0) + 1)ξ∗(t)ξ(t − τ)e−iω0τ

+n(ω0)ξ(t)ξ∗(t − τ)eiω0τ
]
,

where ξ(t) = (−1)n+1ξn(t)/2, it characterizes the influence of the phonon bath
on electronic transitions in a quantum system through the non-stationary cou-
pling between the electronic states of the system and internal oscillations of
frequency ω0. Such a transition is accompanied by the creation or annihilation
of one or several intramolecular frequencies ω0, the average number of which
is supported by the stationary Bose distribution with λ = 0.

EXAMPLE: TWO-LEVEL SYSTEM WITH A PERIODIC
COUPLING TO THE OHMIC PHONON BATH

Analysis of the master equation for occupation probabilities P1(t) = (1/2)(1 +
σz(t)) and P2(t) = (1/2)(1 − σz(t)) becomes possible if we specify the type of
phonon bath and the function κ = κ(t). In this paper we analyze the situation
where non-Markovianity is not important, so that σz(t − τ) ≈ σz(t) and thus the
integro-differential equation reduce to the differential equation

σ̇z(t) = −K (t)σz(t) + F (t) ,

where

K (t) =
∫ t

0
g(t , t − τ)dτ

can be thought of as the time-dependent transition rate and

F (t) =
∫ t

0
f (t , t − τ)dτ

is the time-dependent free term. Note that reducing of master equation is car-
ried out with good accuracy if the Born approximation is used to obtain the
relaxation matrix. In this case, the manifestation of non-Markovianity occurs in
higher orders with respect to matrix elements of type Vnn′.
To have analytical expressions for the GB(τ) in hand, following the spin-boson
description let us represent this function in a form

GB(τ) =
1

2π

∫∞
0 dω J(ω)

ω2

×[(2n(ω) + 1)(1 − cosωτ) + i sinωτ ]

where J(ω) = (2π/ℏ2)
∑

j κ
2
j δ(ω−ωj) is the bath spectral density. Below we use

its Ohmic form
J(ω) =

2πEr

ℏωD
ωθ(ωD − ω) ,

which guarantees the validity of the condition ⟨V̂nn′(t)⟩ = 0, The Ohmic form
depends on the value of the reorganization energy Er and includes an abrupt
cutoff at the Debye frequency ωD.
Assuming χn(t) = χn cosωt and introducing the notations α = κ/ℏω0 and β =
χ/ℏω0 where κ1 = −κ2 ≡ κ/2 and χ1 = −χ2 ≡ χ/2 we get the function ξ(t) =
ξ1(t)− ξ2(t):

ξ(t) = α + β[ϕa(t)− iϕb(t)] ,

ϕa(t) =
1

1 − ζ2 (cosωt − ζ2 cosω0t) ,

ϕb(t) =
ζ

1 − ζ2 (sinωt − ζ sinω0t) , (ζ ≡ ω/ω0) .

Figs. 1 and 2 show one of the possible scenarios for the development of TLS
kinetics at room temperature in the presence of a non-resonant (ω ̸= ω0 and
resonant (ω ≃ ω0) external field, controlling the TLS – environment coupling.

RESULTS FOR TLS WITH A PERIODIC COUPLING TO THE
OHMIC PHONON BATH

Figure 1: Temporal behavior of the occupation probabilities of electronic states of an open TLS with
periodic changes in the electron-phonon coupling κ(t). The insets on the left and right show the time
dependences of both the transition rate and the free term of the kinetic equation under conditions of
non-resonant (a) and resonant (b) influence of a periodic field on κ(t). Three characteristic times of
temporal evolution are clearly observed at scales ∆t ∼ 0.1 ps, 0.01 ns and 1 ns. Calculations with
parameters T = 300 K, Er = 50 cm−1, ℏω0 = 15 cm−1, ℏωs = 70 cm−1, ℏωD = 5 cm−1, ℏv= 1 cm−1,
α = 0.25, β = 0.1. The resonant regime of 1→2 transitions is estimated at ω ≃ ω0 = 15 cm−1.

Figure 2: The initial stage of development of kinetics (scale ∆t ∼ 0.1 ps), at which the change in the
occupation probabilities of TLS states is insignificant, but the rate K (t) of transition between states
increases the evolution time scale to ∆t ∼ 0.01 ns).

The formation of the transition rate K (t) (and the free term F (t)) is due to the
development in time of three stages of the kinetic process.
1. The fastest stage can be estimated by expanding the functions GB(τ) and
GS(t , t − τ) near t ≃ 0, τ = 0. At room temperature, when n(ωD),n(ω0) ≫ 1, and
with use of the Ohmic form of the bath spectral density we get

GB(τ) ≈ i(Er/ℏ)τ + (2ωDkBT/ℏ)τ2 ,

GS(t , t − τ) ≈ (α + β)2[iω0τ + (2ω0kBT/ℏ)τ2] .

Thus, τ−1
fast ≃

√
(2kBT/ℏ)[ωD + (α + β)2ω0]. For the values of ωD, ω0 and T we

use, this gives a value of τfast ≈ 0.25 ps, which is in good agreement with the
data presented in Fig. 2.
2. The second kinetic stage is fixed on the time scale ∆t ∼ ω−1

0 ∼ 0.02 ns
(Fig. 1). This stage reflects a purely dynamic process that has little effect on
the change in the probabilities Pn(t) of occupation of the TLS states.
3. Real changes in the occupation probabilities are associated with the third,
slowest stage of kinetics, which is fixed on the time scale ∆t ∼ 1 ns. The stage
is controlled by the the matrix elements Vnn′ so that the inverse characteristic
time of the slowest stage is equal to τ−1

tr ∼ v2τfast. This gives τtr ∼ 1 ns, which
is in good agreement with the time behavior of σz = σz(t) shown in Figure 1.


