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Atomic clusters

 Many properties of clusters are different from
those of the bulk, like binding energies,
thermodynamic functions, crystalline structure,
optical, magnetic or chemical behavior

* One important property which is strongly size-
dependent is the melting point.

* Small particles melt at significantly lower
temperatures than bulk material, which is due to
the fact that the surface energy of liquids is lower
than that of solids - and small particles mainly
consist of the surface.



Configurational melting

e Atomic clusters

Entropy and Phase Coexistence in Clusters:
Metals vs. Nonmetals

by Richard Stephen Berry
" andBoris Michailovich Smirnov




Computer modeling

* N<1000 — molecular dynamics

*N— QO Classical thermodynamics

* N~10000 — mesoscopic range-?



Metropolis -Hastings algorithm
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Modified Metropolis -Hastings
algorithm

r; — old coordinates'

r; — new coordinates'

p(El N Ez) - e(El_Ez)/T
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(r; —1)x = Rand (— > : >

(; \ (; - Gibbs free energy



Thermodynamic functions are
determined during modelling

 Number of microstates n = HA(’?:)

*Entropy S = Zh’l(A(f; ))

*Gibbs free energy
G=FE+pV,—3T);In .&(ri, Nstep)
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Evolution of random displacement
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Random displacement function for various
temperatures and cluster states
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System free energy, F

Free energy evolution for various
temperatures and cluster states
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Size dependence of melting
temperature

macroscopic argon
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Conclusions

 Modified Metropolis -Hastings algorithm

1. Shortens simulation time by 1-2 orders of magnitude

2. Takes into account the centrally symmetric structure of the cluster,
allowing one to simulate surface.

3. Of all possible random conformations, it selects only a small part, that
constitute spherically symmetrical macrostates. The displacement range
of atoms starts from small values and grows gradually until free energy
minimum is reached. Thus no “excessive” microstates are taken into
account which saves substantially modelling time.

3. Gradual growth of allowed atom displacement range provides gradual
system evolution from the most ordered to less ordered state, so that
no free energy minima are missed.

4. During the calculation process, the thermodynamic functions of the
cluster are calculated naturally without additional computer time.



Relaxation of pores in nanoclusters

Relaxation of a solid nanocluster with an internal pore was
investigated using the molecular dynamics method.

It was shown that there exist “magic” sizes of pores similar to
“magic” sizes of clusters with closed icosahedral shells.

Like “magic” clusters, “magic” pores have special properties.

It was shown that clusters in which pore relaxation occurs during
simulation demonstrate two relaxation mehanisms.

An explanation based on interaction of three vibrational modes is
proposed for an unusual explosive relaxation mehanism as a
consequence of the resonant interaction of two surface vibration
modes wit the pore vibrational mode.

The simulation data are in good agreement with theoretical
explanation.



Explosive scenario of pore relaxation
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Fig. 2. Scheme of pore relaxation according to
the "explosive” scenario. Then the cluster
returns to a spherical shape.
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Fig. 3. The stages of pore relaxationare shown at successive time points that were observed in
the simulation. a) - the initial position of the pore, b) - the advancement of the pore to the cluster

boundary, c¢) - the pore completely disappeared with the violation of the order of atoms in the
cluster and their partial evaporation.



“Explosive” pore relaxation
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Fig. 4. An example of time dependence pore volume in the case of “jJump” pore relaxation. b) Wavelet de-
noising of such dependence ¢) Wavelet transformation of such dependence.
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Pore volume

Continuous pore relaxation

P=1 A, R__=3, T=42K, N_=2744

Pore volume

P=1 Atm, R__ =3, T=42K, N _=2744

b)

&4

20
time, ps

v w 20

i

"
|

Time, ps

i

'l,u‘ .|v'1

VLS

1000

Fig. 6, a) An example of time dependence pore volume in the case of “usual” pore relaxation. b) Wavelet
denoising of such dependence ¢) Wavelet transformation of such dependence.



“Explosive” pore relaxation

u_}l Elnd LUE -Oscillation frequencies of cluster and pore surfaces

W

write the Lagrangian of these oscillations as

3 Oscillations of pore center

. 2 2.2 -2 2.2 22 2_2
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2 2 2

L=

+exyz

Here x, y are surface mode variables, while
z — characterizes porecenter position and = 1s
characteristic value of mode interaction.



“Explosive” pore relaxation
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“Explosive” pore relaxation

The system of equations for a particular case
n=n, =n, =n, 1s reduced to the equation

n=Vvn*

whose solution can be found easily
n
0

= —_— 4
" 1-tVn, @)

It 1s just this solution that corresponds to the
regime of explosive instability. Oscillation am-
plitude for a finite time ¢, =1/Vn, turns to in-
finity. In our case, this means the occurrence
of a large displacement of the pore center and
its contact with the cluster surface. The latter
leads to the disappearance of the pore.



Conclusions

Scenarios for the relaxation of nanoclusters with intrinsic pore are
considered.

The absence of relaxation of some of the “magic” pores was
demonstrated, for which the distribution function of the observation time
is obtained.

In other cases, two relaxation scenarios were found: explosive and
“normal”.

For explosive relaxation, a mechanism for its implementation is proposed
as a conseqguence of the resonant interaction of two surface vibration
modes (cluster surface and pore) and oscillations of the position of the
pore center in the cluster. In the resonant case, explosive mode instability
arises, which leads to displacement of the pore and its reaching the
cluster surface.



