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4. Conclusion 

1.The analytical investigation of the dynamical properties of the breather solution found by 
M. Tajiri and Y. Murakami for the Boussinesq equation has been carried out in detail. This became 
possible due to proposing the new parameterization of the solution, which allowed us to show the 
composite structure of the solution, to find exactly its existence boundary, and to calculate 
explicitly all the dynamical characteristics of the complex excitation. 

2.The complex solution represents the algebraic sum of the kink and the breather expressions. The 
variability of the solution forms, previously revealed in the numerical simulation, is simply 
explained by the difference in the amplitudes of these components. In modern terms of the 
soliton theory this complex solution would be related to the category of the wobbling kinks. We 
single out the solution into a special category and call it the Boussinesq breather. 

3.We show that the breather at the nearest vicinity of its existence boundary emerges from the 
linear localized mode of the single soliton and we demonstrate this analytically for the first time. 
This fact encourages the search for similar exact solutions in other integrable equations, first of all, 
with higher dispersive terms. 

4.We exactly obtain the first integrals, the energy and the field momentum, for the Boussinesq 
breather and explicitly calculated the adiabatic invariant for the complex excitation. We carried 
out the quasiclassical quantization of the nonlinear oscillating solution, obtaining its energy 
spectrum, i.e., the energy dependence on the field momentum and the number of states, and 
established the Hamiltonian equations for this particle-like excitation.
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The Boussinesq equation: 
Long waves in shallow water
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Calculating the derivatives and checking the identities:

The Hamiltonian equations for the Boussinesq breather 
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The parametrically defined energy surface, having the 
quite flat shape, as function of the normalized 

number of states and the field momentum

The adiabatic invariant of the Boussinesq breather, 
i.e. the normalized number of states, as a function of 

the new parameters

( ) ( ) 







−−==
4

3
sin1cosh4sinsinh

9

16
, 22 IIbr

000 EI =

== brd III 0 1

0I== NIbr

The Bohr–Sommerfeld quantization rule: 

The normalized number of states:

The Boussinesq breather 
energy as a function of 

the new parameters 

The Boussinesq breather field momentum 
as a function of the new parameters   
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The dispersion law of continuous spectrum 
waves and the carrier frequency of the kink 

localized mode.

We call this special type of the 

wobbling kink the Boussinesq 
breather.

The external linear localized mode
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The breather existence boundary: 
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A.M. Kosevich, The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices,
 2nd Ed., WILEY-VCH, Weinheim, Germany (2005).
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The particle-like kink of the Boussinesq equation 
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The shock wave analog in the 1D crystal 

The negative localized deformation 

The energy

The displacement (kink )
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The field momentum
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The small-amplitude breather limit

J.G. Berryman, Stability of solitary waves in 
shallow water, Phys. Fluids, 19, 771 (1976)
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The indivisible wobbling kink 
of the Boussinesq equation 

The Hamiltonian equations for the Boussinesq breather as a particle-like excitation

The breather solution as the wobbling kink of the Boussinesq equation 
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Main problem of the solution presentation 
of M. Tajiri and Y. Murakami
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The evolution of the breather solution 
of the Boussinesq equation 

The algebraic sum of the pure soliton and the nonlinear breathing mode
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The multisoliton solution of the Boussinesq equation

R. Hirota, Exact N-soliton solutions of the wave 
equation of long waves in shallow-water and in 
nonlinear lattices, J. Math. Phys. 14, 810 (1973)
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