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Abstract

We develop a general kinetic approach to studying high-frequency collective excitations in
arbitrary-spin quantum gases. To this end, we formulate a many-body Hamiltonian that includes
the multipolar exchange interaction as well as the coupling of a multipolar moment with an
external field. By linearizing the respective collisionless kinetic equation, we find a general
dispersion equation that allows us to examine the high-frequency collective modes for arbitrary-
spin atoms obeying one or another quantum statistics. We analyze some of its particular
solutions describing spin waves and zero sound for Bose and Fermi gases.

Hamiltonian for arbitrary spin-F atoms
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H0 also includes the coupling of a multipololar moment with an external field. The coupling
is specified by two irreducible tensors hj

m and T j
m with indices j and m denoting their rank

and component, respectively (for a given rank j, both tensors have 2j + 1 components). The
quantity hj

m is constructed from the components of the physical external field and T j
m represents

a spherical tensor operator and describes the multipolar degrees of freedom. U [j](p1 − p4)
are the Fourier transforms of the energies corresponding to direct (j = 0) and multipolar
(i = 1, . . . , 2F ) interactions.

Kinetic equation and its linearization

In the case of small inhomogeneity and weak interaction, the Wigner density matrix fαβ(x,p)
satisfies the following kinetic equation:
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The collision integral can be omitted if we are interested in high-frequency collective modes.
The Wigner density matrix and the mean-field particle energy εαβ(x,p) can be decomposed
into a complete set of irreducible spherical tensor operators,
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The coefficients f j
m determine, in the spherical basis, the physical quantities such as three

components of the magnetization vector for j = 1, five components of the quadrupolar tensor
for j = 2, seven components of the octupolar tensor for j = 3, etc.
We solve the respective kinetic equation assuming that the tensorial components of the Wigner
distribution function f j

m(x,p) slightly deviate from a homogeneous stationary state:
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By applying the Fourier-Laplace transform,
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we obtain the following linearized kinetic equation
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where (gjm)pk is the initial condition determined by
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The dispersion equations and eigenfrequencies in the case of zero magnetic field, hj
m = 0

The dispersion equation reads,
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For a Bose gas at zero temperature, the equilibrium distribution function is
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Therefore, dispersion equation (6) gives 2F + 1 (j = 0 . . . 2F ) undamped modes,
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This agrees with the Bogoliubov spectrum at small wave vectors (phonon spectrum).
For a ground-state Fermi gas, the tensorial component (f 0

0 )p of the Wigner function is
written in terms of the Heaviside step function Θ(ε),
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As for bosons, we have 2F + 1 oscillation modes, which are also well known as zero sound.

The case of nonzero magnetic field, hj
m ̸= 0 for the modes with |m| = 2F

For a ferromagnetic Bose gas in an external field, the distribution function is
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For a Fermi gas at zero temperature, we have
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Summary

• We have obtained a many-body Hamiltonian of spin-F atoms, which includes the effects of
multipolar exchange interaction and the coupling of a multipole moment with an external
field. Then we have employed the Hamiltonian to derive the collisionless kinetic equation
for quantum gases valid for small inhomogeneities.

• Having linearised the kinetic equation, we have arrived at the dispersion equation. This has
allowed us to study high-frequency oscillations near the equilibrium degenerate state of Bose
and Fermi gases, both in the presence and the absence of a magnetic field.

• We have showed that there is no need to make any assumptions about the form of the
pairwise interaction potential J [j](p) when calculating the integrals in the dispersion equation
since the later contains the quantity J [j](0), which appears in a natural way.

• Oscillations with m ̸= 0 are characterized by a quadratic dispersion law (with a gap) and
correspond to spin waves. The excitations with m = 0 are determined by the components
of the tensorial Wigner distribution function of all ranks. The respective modes have a linear
dispersion law and represent zero sound or density excitations.

• For a gas of fermionic atoms in the polarized equilibrium state, the dispersion equation for
zero sound (m = 0) loses its meaning since all the interaction terms are canceled. This fact
can be proved at least for F = 1/2, 3/2, 5/2.
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