Theory of Bose-Einstein condensation with pair

‘ Abstract I

We study the thermodynamic properties of an interacting Bose gas with condensate using the
energy-functional formulation of the Hartree-Fock-Bogoliubov (HFB) approach. For contact inter-
action, we obtain a solution with self-eliminating divergence to the coupled equations describing a
condensate of correlated pairs of particles in equilibrium. We analyze the temperature dependen-
cies of thermodynamic quantities such as condensate density, chemical potential, and pressure and
compare them with those of Popov approximation. Our results show a first-order phase transition
from the normal to the paired condensate state, with a higher transition temperature than that of an
ideal Bose gas.

‘ Energy-functional formulation of HFB approach I

The non-equilibrium state of a quasiparticle Bose gas in the presence of anomalous averages is
characterized by the following non-equilibrium statistical operator:
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In equilibrium, A, and B,y are determined through the self-consistency procedure. This statistical
operator modifies Wick’s rule, producing both normal and anomalous averages,
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The normal and anomalous distribution functions are conveniently combined into a block matrix, and
the condensate amplitudes into a column vector:
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According to (2), the matrices A4, B and B' in (1) are expressed through f, ¢ and ¢'. Hence, the
statistical operator and the non-equilibrium entropy S = —5p pln p are functionals of the normal and
anomalous distribution functions only, p = p(f) and S = S(f). Note that f is isomorphic under the
canonical transformation that diagonalizes both p and f. As a result, one can show that
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The equilibrium values of f and b are determined by maximizing the entropy at fixed energy
E(f,b) = Sp pH and particle number N(f,b) = SppN with the corresponding Lagrange multipliers
interpreted as the inverse temperature 5 and the chemical potential ;1. The solution of the variational
problem reads,
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For uniform state, f,,' = fpdpps Ipp’ = IpOp.—p'» bp = bodp o @nd ng = bjby/V is the condensate density.

The self-consistency equations for the Hamiltonian with a pairwise contact interaction

For the Hamiltonian with pairwise contact interaction U = ‘“jn—hQa > 0 (repulsive forces), we obtain from

(3)—(5) three equations, supplemented by an equation for the total particle number n:
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where the quasiparticle distribution function v, and quasiparticle energy £, are given by
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The second equation in (6) contains a divergent term [ (at high momenta) given by
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l. Popov gapless approximation (PA) neglects the divergent term. Therefore, we have
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The temperature dependence n(T') is provided by (7). The expression for pressure takes the form
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Il. Solution with self-eliminating divergence (SSED):
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The energy gap lies in the range Ey, € (0,2n0U]. Its maximum value, E, = 2n,U, is reached
for the SSED. The zero energy gap arises only within the Popov gapless approximation, which
does not represent a self-consistent solution of the coupled equations corresponding to the
Hartree—Fock—Bogoliubov framework.

Let us find the anomalous correlation function g, that determines the number of paired particles,
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This implies that all correlated particles are in the condensate. The corresponding pressure reads
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At absolute zero temperature (1" = 0), both condensate depletion (n = ny) and pressure vanish.

Normal state (NS) is obtained by setting /7, = 0 (see the third equation in (6)):
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This solution ensures the conservation law for the total particle number by appropriately adjusting
the chemical potential . The pressure in the normal state is written as

kT
PNS — n2U + 721):11’1 (1 -+ Vp).

‘ Physical observables I

The turning point in the retrograde behavior of physical observables below defines the transition
temperature of the interacting Bose gas.
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Figure 1: Temperature dependencies of: (a) condensate fraction ny/n, (b) chemical potential, (c)
pressure, (d) isothermic compressibility — for the total density of degenerate state n?9 = 1.6 - 10™
cm=3, the scattering length a = 4.9 nm, p. = pNS(T = TB%) = 2nU, P. = PM(T = T8%) =
n*U + ((5/2)/¢(3/2)nkgT™% and k. = 1/(nu.). The solid curves refer to: ideal Bose gas (IBG),
solution with self-eliminating divergence (SSED), Popov approximation (PA) and normal state (NS)
— for total density n = ns, i.e. relative density rd= n/n% = 1. The dashed curve refers to the
normal state for rd= 0.96. Magnified sections of the foregoing curves with retrograde behaviour are
shown in the insets.

‘ Summary I

* In the case of contact interaction, we have found a solution with self-eliminating divergence to the
self-consistency equations within HFB approach.

« This solution implies that at 7' = 0, there is no quantum depletion, all correlated particles are in
the condensate and pressure exactly vanishes.

» We have numerically analyzed the temperature dependence of main thermodynamic quantities
for the obtained solution and compared them with those predicted by the Popov approximation.

» We have observed a first-order phase transition from the normal to the paired condensate state.
» We have predicted an increase in the transition temperature compared to that of an ideal gas.

» We have observed the negative compressibility below the critical temperature for SSED. At the
same time, the system of equations does not allow for the existence of a pure single-particle
condensate. Thus, neither pure single-particle nor pure pair condensates exist; only a mixture of
both is possible.
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