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Abstract

We study the thermodynamic properties of an interacting Bose gas with condensate using the
energy-functional formulation of the Hartree-Fock-Bogoliubov (HFB) approach. For contact inter-
action, we obtain a solution with self-eliminating divergence to the coupled equations describing a
condensate of correlated pairs of particles in equilibrium. We analyze the temperature dependen-
cies of thermodynamic quantities such as condensate density, chemical potential, and pressure and
compare them with those of Popov approximation. Our results show a first-order phase transition
from the normal to the paired condensate state, with a higher transition temperature than that of an
ideal Bose gas.

Energy-functional formulation of HFB approach

The non-equilibrium state of a quasiparticle Bose gas in the presence of anomalous averages is
characterized by the following non-equilibrium statistical operator:

ρ = exp(Z − F ), F = a†pApp′ap′ +
1

2
(apBpp′ap′ + a†pB

∗
pp′a

†
p′) + a†pCp + C∗

pap, (1)

In equilibrium, App′ and Bpp′ are determined through the self-consistency procedure. This statistical
operator modifies Wick’s rule, producing both normal and anomalous averages,

fp2p1 = Sp ρa†p1ap2, gp2p1 = Sp ρap1ap2, g†p2p1 = Sp ρa†p1a
†
p2
, Sp ρap = bp, Sp ρa†p = b∗p. (2)

The normal and anomalous distribution functions are conveniently combined into a block matrix, and
the condensate amplitudes into a column vector:

f̂ =

(
f −g

g† −1− f̃

)
, b̂ =

(
b

b∗

)
.

According to (2), the matrices A, B and B† in (1) are expressed through f , g and g†. Hence, the
statistical operator and the non-equilibrium entropy S = −Sp ρ ln ρ are functionals of the normal and
anomalous distribution functions only, ρ = ρ(f̂ ) and S = S(f̂ ). Note that f̂ is isomorphic under the
canonical transformation that diagonalizes both ρ and f̂ . As a result, one can show that

δS(f̂ )

δfp2p1
= Ap1p2,

δS(f̂ )

δgp2p1
=

1

2
Bp1p2,

δS(f̂ )

δg†p2p1
=

1

2
B†

p1p2
.

The equilibrium values of f̂ and b̂ are determined by maximizing the entropy at fixed energy
E(f̂ , b̂) = Sp ρH and particle number N(f, b̂) = Sp ρN with the corresponding Lagrange multipliers
interpreted as the inverse temperature β and the chemical potential µ. The solution of the variational
problem reads,

f̂ = [exp(βξ̂)− 1]−1, η̂ − µb̂ = 0, (3)

where

ξ̂ =

(
ε− µ ∆

−∆∗ −ε̃ + µ

)
, η̂ =

(
η

η∗

)
(4)

and

εpp′ =
δE(f̂ , b̂)

δfp′p
, ∆pp′ = 2

δE(f̂ , b̂)

δgp′p
, ηp =

δE(f̂ , b̂)

δb∗p
.. (5)

For uniform state, fpp′ = fpδpp′, gpp′ = gpδp,−p′, bp = b0δp,0 and n0 = b∗0b0/V is the condensate density.

The self-consistency equations for the Hamiltonian with a pairwise contact interaction

For the Hamiltonian with pairwise contact interaction U = 4πℏ2
m a > 0 (repulsive forces), we obtain from

(3)–(5) three equations, supplemented by an equation for the total particle number n:

ξp =
p2

2m
− µ + 2nU, ∆ = n0U −∆UI, [∆ + 2(n− n0)U − µ]

√
n0 = 0, (6)

n = n0 +
1

2V

∑
p

(
ξp
Ep

(1 + 2νp)− 1

)
, (7)

where the quasiparticle distribution function νp and quasiparticle energy Ep are given by

Ep =
√

ξ2p − |∆p|2, νp = [exp(βEp)− 1]−1.

The second equation in (6) contains a divergent term I (at high momenta) given by

I =
1

2V

∑
p

1

Ep
(1 + 2νp) .

I. Popov gapless approximation (PA) neglects the divergent term. Therefore, we have

ξPA
p =

p2

2m
+ n0U, ∆PA = n0U, µPA = n0U + 2(n− n0)U,

EPA
p =

√
p2

2m

(
p2

2m
+ 2n0U

)
.

The temperature dependence n0(T ) is provided by (7). The expression for pressure takes the form

P PA =
1

2V

∑
p

(
ξp − Ep

)
+ n2U − n2

0U

2
+

kBT

V

∑
p

ln (1 + νp).

II. Solution with self-eliminating divergence (SSED):

∆SSED = lim
I→∞

n0U

1 + UI
= lim

I→∞

n0

I
= 0, µSSED = 2(n− n0)U, ESSED

p = ξSSED
p =

p2

2m
+ 2n0U,

n = n0 +
1

V

∑
p

νSSED
p , νSSED

p =
[
exp

(
βξSSED

p

)
− 1

]−1
.

The energy gap lies in the range E0 ∈ (0, 2n0U ]. Its maximum value, E0 = 2n0U , is reached
for the SSED. The zero energy gap arises only within the Popov gapless approximation, which
does not represent a self-consistent solution of the coupled equations corresponding to the
Hartree–Fock–Bogoliubov framework.
Let us find the anomalous correlation function gp that determines the number of paired particles,

1
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p
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∣∣∣∣∣ = 1

V
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2Ep
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I
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This implies that all correlated particles are in the condensate. The corresponding pressure reads

P SSED = (n2 − n2
0)U +

kBT

V

∑
p

ln (1 + νp).

At absolute zero temperature (T = 0), both condensate depletion (n = n0) and pressure vanish.

Normal state (NS) is obtained by setting
√
n0 = 0 (see the third equation in (6)):

∆NS = 0, ENS
p = ξNS

p =
p2

2m
− µ + 2nU,

n =
1

V

∑
p

νNS
p , νNS

p =
[
exp

(
βξNS

p

)
− 1

]−1
.

This solution ensures the conservation law for the total particle number by appropriately adjusting
the chemical potential µ. The pressure in the normal state is written as

PNS = n2U +
kBT

V

∑
p

ln (1 + νp).

Physical observables

The turning point in the retrograde behavior of physical observables below defines the transition
temperature of the interacting Bose gas.

Figure 1: Temperature dependencies of: (a) condensate fraction n0/n, (b) chemical potential, (c)
pressure, (d) isothermic compressibility — for the total density of degenerate state ndeg = 1.6 · 1014
cm−3, the scattering length a = 4.9 nm, µc = µNS(T = T IBG) = 2nU , Pc = PNS(T = T IBG) =

n2U + ζ(5/2)/ζ(3/2)nkBT
IBG and κc = 1/(nµc). The solid curves refer to: ideal Bose gas (IBG),

solution with self-eliminating divergence (SSED), Popov approximation (PA) and normal state (NS)
— for total density n = ndeg, i.e. relative density rd= n/ndeg = 1. The dashed curve refers to the
normal state for rd= 0.96. Magnified sections of the foregoing curves with retrograde behaviour are
shown in the insets.

Summary

• In the case of contact interaction, we have found a solution with self-eliminating divergence to the
self-consistency equations within HFB approach.

• This solution implies that at T = 0, there is no quantum depletion, all correlated particles are in
the condensate and pressure exactly vanishes.

• We have numerically analyzed the temperature dependence of main thermodynamic quantities
for the obtained solution and compared them with those predicted by the Popov approximation.

• We have observed a first-order phase transition from the normal to the paired condensate state.

• We have predicted an increase in the transition temperature compared to that of an ideal gas.

• We have observed the negative compressibility below the critical temperature for SSED. At the
same time, the system of equations does not allow for the existence of a pure single-particle
condensate. Thus, neither pure single-particle nor pure pair condensates exist; only a mixture of
both is possible.
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