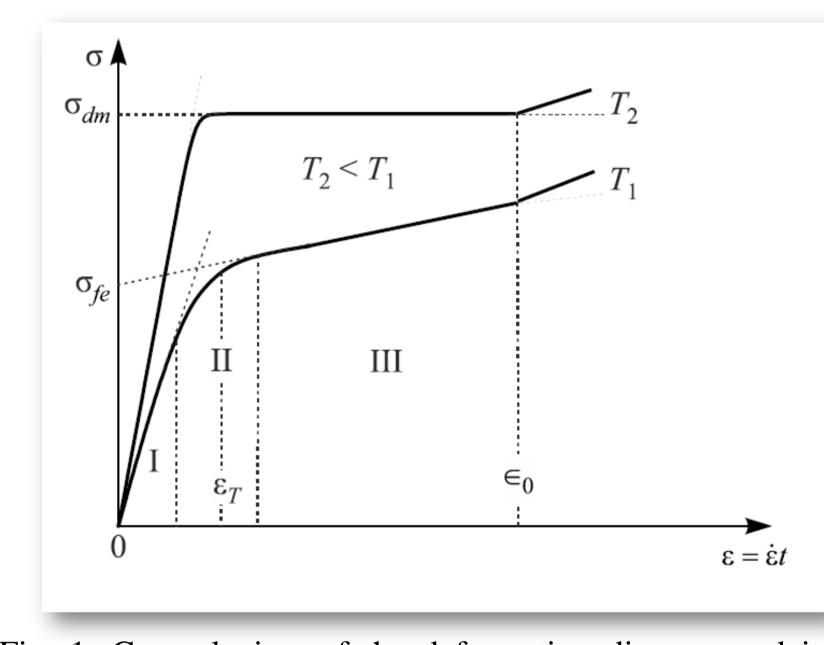
NONLINEARITY EFFECT OF HIGHLY ELASTIC DEFORMATION OF AN AMORPHOUS POLYMER

V. D. Natsik, <u>H. V. Rusakova</u>

B.Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine e-mail: <u>rusakova@ilt.kharkov.ua</u>

The analysis of the kinetics of the tensile deformation of *amorphous polyimide* samples with a constant rate of $7 \cdot 10^{-5} < \dot{\epsilon} < 6 \cdot 10^{-3} \text{ s}^{-1}$ at constant values of the temperature *T* in the warm state (*T* = 293 K) and under the conditions of moderate (*T* = 77 K) and deep (*T* = 4.2 K) cooling begun in [1] was continued. The three-stage deformation diagrams were registered in [1] and are shown schematically in Fig. 1, here $\epsilon = \dot{\epsilon}t$ is the relative deformation, σ is the deforming stress. The initial stages of linear elasticity $\sigma_{I} = M_{e} \epsilon$ with Young's modulus $M_{e} = M_{e}(T)$ were recorded within $\epsilon < 0.1$. The next relaxation stage σ_{II} was interpreted in [1, 2] as a consequence of the thermomechanical activation of specific *elaston excitations* on molecular chains in an amorphous polymer, i.e., elementary acts of highly elastic deformation under the action of effective stress $\sigma^* = \sigma - \sigma_i(\epsilon; T)$ (Fig. 2). Here, σ_i is the entropy component of internal stresses caused by changes in conformational entropy during the straightening of molecular chains. The stage of highly elastic deformation σ_{III} is also determined by the kinetics of elaston excitations, it always has an extended linear component $\sigma_{III} = \sigma_{fe} + M_{he} \epsilon$ with the modulus of entropy elasticity $M_{he} = M_{he}(T)$ and the conditional limit of elasticity σ_{fe} . But when the part of the samples were deformed in a warm state of T = 293 K, a significant deviation from the linear law was found within the strength limit of polymer $\epsilon < \epsilon_{r}$.



The nonlinearity of the stage σ_{III} is interpreted as a consequence of the nonlinear dependence of on deformation with the second-order elastic modulus $\mu_{he} = \mu_{he}(T)$:

$$\sigma_i(\varepsilon;T) = M_{he}\varepsilon + \mu_{he}\varepsilon^2.$$
 (1)

Fig. 1. General view of the deformation diagram and its transformation at polymer cooling. The lower curve T_1 and σ_{fe} is the deformation state of a warm or moderately cooled polymer; the upper curve T_2 and σ_{dm} is the limiting state of low-temperature deformation melting.

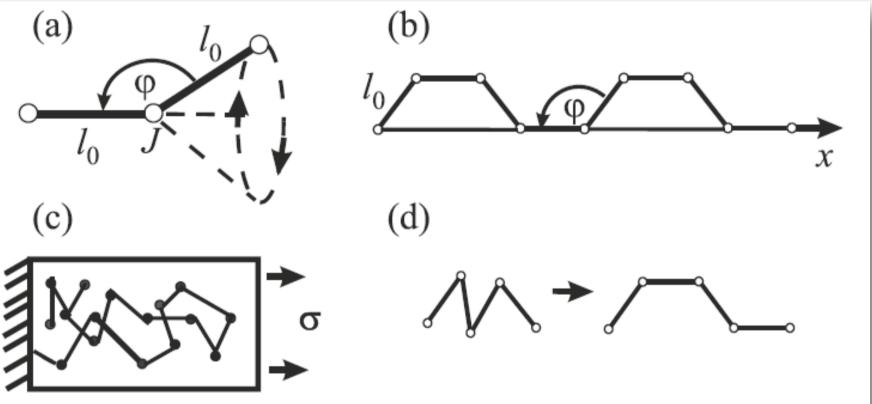


Fig. 2. Mechanical model (rods – joints) of the monomer structure of a molecular chain, a fragment of a molecular coil (sample) and an elementary act of highly elastic deformation: limited rotation of adjacent monomer units (a), molecular chain straightened along the x axis (b), conformations of molecular chains in a polymer sample (c), mechanical activation of the molecular segment (elaston excitation) (d), l_0 is monomer unit (rod), J is simple covalent bond (joint), φ is bond angle. This assumption transforms the four-parameter nonlinear deformation equation [2] into a more complex five-parameter nonlinear equation, in which the kinetics of elaston activation is complicated by the consideration of nonlinearity (1):

$$\frac{d}{d\varepsilon}\sigma = M_e - (M_e - M_{he})\beta \operatorname{sh}\left[\frac{\sigma - M_{he}\varepsilon - \mu_{he}\varepsilon^2}{(M_e - M_{he})\varepsilon_T\sqrt{1 + \beta^2}}\right].$$
 (2)

Parameters of this equation are three isothermal coefficients of elasticity $M_e(T)$, $M_{he}(T)$, $\mu_{he}(T)$ and two kinetic coefficients β , ε_T . Its solution with the initial condition is described by the formula:

$$\sigma(\varepsilon; T, \dot{\varepsilon}) = (M_e - M_{he}) \varepsilon_T \sqrt{1 + \beta^2} \ln \left[\frac{\sqrt{1 + \beta^2} + \beta + 1 + \left(\sqrt{1 + \beta^2} - \beta - 1\right) \delta(\varepsilon)}{\sqrt{1 + \beta^2} + \beta - 1 + \left(\sqrt{1 + \beta^2} - \beta + 1\right) \delta(\varepsilon)} \right] + (3)$$

+ $2\mu_{he} \varepsilon_T^2 [1 - \delta(\varepsilon)] + (M_{he} - 2\mu_{he} \varepsilon_T) \varepsilon + \mu_{he} \varepsilon^2.$

The exponential function $\delta(\varepsilon) = \exp(-\varepsilon/\varepsilon_T)$ determines the shape of the deformation diagram within the relaxation stage σ_{II} .

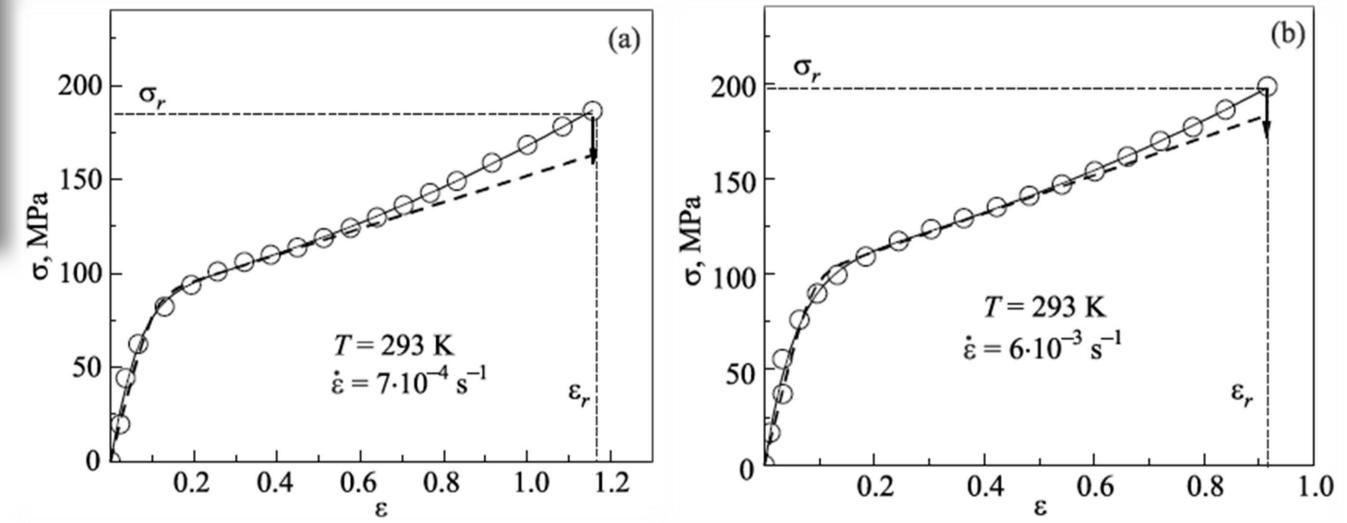


Table. Optimal values of rheological characteristics of polyimide samples obtained as a result of analytical approximation of their tensile test diagrams by the function (3).

έ, s ⁻¹	β	ε _T	$M_e,$	$M_{he},$	μ _{he} ,	$\sigma_{he},$	$\sigma(\varepsilon_r; T, \dot{\varepsilon}),$
			MPa	MPa	MPa	MPa	MPa
$7 \cdot 10^{-4}$	0.6	0.05	1413	52	34	92	187
$6 \cdot 10^{-3}$	1.2	0.05	1745	65	51	100	198

Fig. 3. The deformation diagrams of two samples of amorphous polyimide at T = 293 K and two values of the deformation rate recorded in the experiments [1]: \circ – experimental points. Their analytical approximations are also shown: by the function $\sigma(\varepsilon)$ – formula (3), solid line; by the function $\sigma(\varepsilon)$ without taking into account nonlinearity, dash line.

[1] V. D. Natsik, H. V. Rusakova, S. V. Lubenets, V. A. Lototskaya, and L. F. Yakovenko, Fiz. Nizk. Temp. 49 569 (2023) [Low Temp. Phys. 49, 521 (2023)], https://doi.org/10.1063/10.0017812.
[2] V. D. Natsik, H. V. Rusakova, Low Temp. Phys. 49, 228 (2023). http://dx.doi.org/10.1063/10.0016875.