THE COMPARATIVE CHARACTERIZATION OF DNA:TIO ${ }_{2}$ NANOPARTICLE AND DNA:MOS ${ }_{2}$ NANOPARTICLE NANOASSEMBLIES COLLOIDAL SOLUTIONS INVESTIGATED BY DYNAMIC LIGHT SCATTERING METHOD

Sviderska A.Yu..$^{{ }^{*}}$, Valeev V.A. ${ }^{1}$, Lahuta A.N. ${ }^{2,3}$, Petrushenko S.I. ${ }^{2}$, Glamazda A.Yu. ${ }^{1}$, and Karachevtsev V.A. ${ }^{1}$ ${ }^{1}$ B.I. Verkin Institute for Low Temperature Physics and Engeneering, National Academy of Sciences of Ukraine,
${ }^{2}$ V.N. Karazin Kharkiv National University,
${ }^{3}$ Aston University, Birmingham, UK

Corresponding author: sviderska@ilt.kharkov.ua

The present work is dedicated to compare of nanopaticle (NP) size and temperature stability characteristic of three different colloidal solutions contained DNA and inorganic nanoparticles (NPs). As a method the dynamic light scattering (DLS) measurements were performed in the temperature range of $25-90^{\circ} \mathrm{C}$ in the cacodylate buffer. It seems reasonable that we need used the DLS size distribution by number.

The study of the present problems is caused by the necessity of the forecasting of the absorption processes efficiency on biopolymer-covered TiO_{2} or MoS_{2} nanoparticles.

Nanoobjects for dynamic light scattering investigation

DNA: TiO_{2} NPs nanoassemblies
Aqueous colloidal solution with:
$\left[\mathrm{c}_{\mathrm{TiO} 2}\right]=1.5 \times 10^{-4} \mathrm{M}$;
pH 5 or pH 7 with the cacodylate buffer; $I=0.1 \mathrm{M} \mathrm{(Na})$;
$\mathrm{c}(\text { DNA })_{\mathrm{P}}=8 \times 10^{-5} \mathrm{M}$. $\longrightarrow \mathrm{H}_{3} \mathrm{C}^{-\mathrm{As}_{2}^{\mathrm{OH}}}$
Cacodylic acid

DNA: MoS_{2} NPs nanoassemblies
Aqueous colloidal solution with:
$\left[\mathrm{c}_{\mathrm{MOS} 2}\right]=1 \mu \mathrm{~g} / \mathrm{ml}$;
pH 7 with the cacodylate buffer; $I=0.001 \mathrm{M}\left(\mathrm{Na}^{+}\right) ;$ $\mathrm{c}(\mathrm{DNA})_{\mathrm{P}}=9.182 \times 10^{-5} \mathrm{M}$.

$3.3 \times 10^{12} \mathbf{T i O}_{2} \mathbf{N P} / l \quad 3.5 \times 10^{15} \mathbf{D N A} / l \quad \zeta=-49.2 \pm 0.8 \mathrm{mV}$

I. DNA: TiO_{2} NPs nanoassemblies, pH 5

Dynamic light scattering method

Malvern Zetasizer Nano ZS (Red badge) ZEN3600

The particle size measured in a Dynamic Light Scattering (DLS) instrument is the diameter of the sphere that diffuses at the same speed as the particle being measured

Brownian motion

"The random movement of particles in a liquid due to the bombardment by the molecules that surround them"

Large particles move slowly, while smaller particles move quickly.

DLS distribution by number: what happened?
 average diameter of about 200 nm and more (up to 500 nm). At the temperature of about $60^{\circ} \mathrm{C}$ the surface of map „turns into" larger particles nanoaggregates of nanoassemblies. The performed spectroscopic studies of the temperature stability of the biopolymer revealed that upon heating, the DNA denaturation begins from about $75^{\circ} \mathrm{C}$. We suppose that the partial denaturation of the DNA bound to TiO_{2} NPs surface leads to appearance of untwisted strands which capture the neighboring assemblies. This leads to formation of larger DNA: TiO_{2} nanoaggregates which can consist of more than one $\mathrm{TiO}_{2} \mathrm{NP}$ or more DNA molecules are associated with TiO_{2} NPs. The number-based average diameter of the $\mathrm{DNA}: \mathrm{TiO}_{2} \mathrm{NP}$ nanoggregates is of about 80 nm at $25^{\circ} \mathrm{C}$ and of about 210 nm at $90^{\circ} \mathrm{C}$.

II. DNA: TiO_{2} NPs nanoassemblies, pH 7

In the case of pH 7.0 the distribution by number for $\mathrm{DNA}: \mathrm{TiO}_{2}$ NP
 nanoassemblies system is different. The number-based average diameter of the DNA: TiO_{2} NP nanoassemblies is ~ 100 nm at $25^{\circ} \mathrm{C}$ and $\sim 110 \mathrm{~nm}$ at $90^{\circ} \mathrm{C}$. There are observed minor peaks $(\sim 20$ nm) but the main peak looks similar to that one for pure $\mathrm{TiO}_{2} \mathrm{NP}$ and DNA: TiO_{2} NP nanoassemblies (pH 5.0) colloidal solutions at $25^{\circ} \mathrm{C}$. So, at pH 7.0 we didn't observed formation of larger nanoaggregates as in the case of pH 5.0. In turn it may be related to strong binding of DNA macromolecules to TiO_{2} NPs.
III. DNA: MoS_{2} NPs nanoassemblies, pH 7

As regards DNA: MoS_{2} NPs nanoassemblies colloidal solution at pH 7.0 , the number-based average diameter of the DNA: MoS_{2} NP nanoassemblies is of about 90 nm in all temperature range. So, for this system at pH 7.0 we didn't observed larger nanoaggregates.

