VI International Conference "Condensed Matter & Low Temperature Physics 2024", Kharkiv, Ukraine

THE COMPARATIVE CHARACTERIZATION OF DNA:TIO₂ NANOPARTICLE AND DNA:MOS₂ NANOPARTICLE NANOASSEMBLIES COLLOIDAL SOLUTIONS INVESTIGATED **BY DYNAMIC LIGHT SCATTERING METHOD**

Sviderska A.Yu.^{1*}, Valeev V.A.¹, Lahuta A.N.^{2, 3}, Petrushenko S.I.², Glamazda A.Yu.¹, and Karachevtsev V.A.¹ ¹ B.I. Verkin Institute for Low Temperature Physics and Engeneering, National Academy of Sciences of Ukraine, ² V.N. Karazin Kharkiv National University, ³*Aston University, Birmingham, UK*

Corresponding author: sviderska@ilt.kharkov.ua

The present work is dedicated to compare of nanopaticle (NP) size and temperature stability characteristic of three different colloidal solutions contained DNA and inorganic nanoparticles (NPs). As a method the dynamic light scattering (DLS) measurements were performed in the temperature range of $25-90^{\circ}$ C in the cacodylate buffer. It seems reasonable that we need used the DLS size distribution by number.

The study of the present problems is caused by the necessity of the forecasting of the absorption processes efficiency on biopolymer-covered TiO₂ or MoS₂ nanoparticles.

 $[c_{TiO2}] = 1.5 \times 10^{-4} \text{ M};$

Dynamic light scattering method

Malvern Zetasizer Nano ZS (Red badge) ZEN3600

The particle size measured in a Dynamic Light Scattering (DLS) instrument is the diameter of the sphere that diffuses at the same speed as the particle being measured.

Brownian motion

"The random movement of particles in a liquid due to the bombardment by the molecules that surround them"

I. DNA:TiO₂ NPs nanoassemblies, pH 5

DLS distribution by number: what happened? Rotate Z of Sheet1 Z of Sheet1 15.89 16 - 15.89 - 14.12 - 14.12 - 12.36 - 12.36 12 - 10.59 - 10.59 70 a.u. 60 -0 -60 -0 -0 - 8.825 8.825 7.060 - 7.060 50 - 5.295 - 5.295 40 - 3.530 - 3.530 30 - 1.765 1.765 1007 907 807 707 607 - 0.000 -20 0.000 ⁰⁴8 **a**.u. 7,00 d, nm

When temperature increases up to 90° C there are more particles with average diameter of about 200 nm and more (up to 500 nm). At the temperature of about $60^{\circ}C$ the surface of map ", turns into" larger particles – nanoaggregates of nanoassemblies. The performed spectroscopic studies of the temperature stability of the biopolymer revealed that upon heating, the DNA denaturation begins from about 75° C. We suppose that the partial denaturation of the DNA bound to TiO₂ NPs surface leads to appearance of untwisted strands which capture the neighboring assemblies. This leads to formation of larger DNA:TiO₂ nanoaggregates which can consist of more than one TiO₂ NP or more DNA molecules are associated with TiO₂ NPs. The number-based average diameter of the DNA:TiO₂ NP nanoggregates is of about 80 nm at 25° C and of about 210 nm at 90° C.

II. DNA:TiO₂ NPs nanoassemblies, pH 7

In the case of pH 7.0 the distribution number for DNA:TiO₂ bv NP nanoassemblies system is different. The number-based average diameter of the DNA:TiO₂ NP nanoassemblies is ~ 100 nm at 25 0 C and ~110 nm at 90 0 C. There are observed minor peaks (~ 20 nm) but the main peak looks similar to that one for pure TiO₂ NP and DNA:TiO₂ NP nanoassemblies (pH 5.0) colloidal solutions at 25 °C. So, at pH 7.0 we didn't observed formation of larger nanoaggregates as in the case of pH 5.0. In turn it may be related to strong binding of DNA macromolecules to TiO₂ NPs.

III. DNA:MoS₂ NPs nanoassemblies, pH 7

As regards DNA:MoS₂ NPs nanoassemblies colloidal solution at pH 7.0, the number-based average diameter of the DNA:MoS₂ NP nanoassemblies is of about 90 nm in all temperature range. So, for this system at pH 7.0 we didn't observed larger nanoaggregates.