

Reversible luminescent hydrogen peroxide sensors based on CeO_{2-x} and CeO_{2-x} : Eu³⁺ nanocrystals

Pavel Maksimchuk, Yevhen Neuhodov, Kateryna Hubenko, Andrey Onishchenko, Svetlana Yefimova, Vladyslav Seminko

Yu.V.Malyukin Department of Nanostructured Materials, Institute for Scintillation Materials, NAS of Ukraine

pavel.maksimchuk@gmail.com

Hydrogen peroxide (HP) is a widespread industrial chemical widely used for bleaching, cleaning, and disinfection. HP also plays an indispensable role in living organisms being a ubiquitous cell signaling molecule and a substrate or byproduct of a number of enzymes (including catalase, superoxide dismutase, and a number of oxidases and peroxidases). So, HP sensing is required for reliable quantification of HP content in these systems.

sensors based luminescent HP on inorganic nanoparticles can be considered as a perspective alternative to traditional dye- and enzyme-based sensors which usually are unstable and non-reversible. Undoped (CeO_{2-x}) and Eu³⁺-doped (CeO_{2-x}:Eu³⁺) colloidal ceria detection nanoparticles provide HP by reversible nm) and Ce³⁺ quenching of Eu³⁺ (590 (430 nm) luminescence bands. The dynamics of Eu³⁺ Ce³⁺ and quenching and luminescence HPrecovery during nanoceria interaction provides an insight into the microscopic mechanisms of HP sensing by CeO_{2-x} and CeO_{2-x}:Eu³⁺ nanoparticles. Both CeO_{2-x} and CeO_{2-x} : Eu³⁺ luminescent sensors are reversible and their recovery rates can be sufficiently increased by temperature and continuous UV irradiation. At the same time, Eu³⁺ ions deteriorate the catalasemimetic activity of CeO_{2-x} NPs and worsen their antioxidant properties that should be keep in mind while using these sensors in biological media.

Fig2. Hydrogen peroxide sensing using HP-induced quenching of Ce³⁺ (a) and Eu^{3+} (b) luminescence of CeO_{2-x} (a) and CeO_{2-x} : Eu^{3+} (b) NPs.

Fig3. Recovery of luminescence intensity of CeO_{2-x} (a, b) and CeO_{2-x} :Eu³⁺ (c, d) NPs after HP addition without irradiation (a, c) and with UV irradiation (b, d).

Conclusions

Undoped and Eu³⁺-doped colloidal ceria nanoparticles provide effective HP detection by quenching of Ce^{3+} (as a result of $Ce^{3+} \rightarrow Ce^{4+}$ oxidation) and Eu^{3+} (as a result of energy transfer from Eu^{3+} ions to hydroxyl groups) luminescence bands. CeO_{2-x} and CeO_{2-x} : Eu^{3+} luminescent sensors are reversible and the recovery rates can be sufficiently increased by temperature and/or continuous UV irradiation. As a result, the times of full recovery of luminescence signal for both sensors can be decreased from few days to less than 1 hour.

140 160 180

Fig4. Dynamics of Ce^{3+} luminescence intensity of CeO_{2-x} NPs (a) and Eu³⁺ luminescence intensity of CeO_{2-x}:Eu³⁺ NPs (b) at multiple HP addition and continuous UV irradiation (t = 52 °C).

The authors thank the Armed Forces of Ukraine for the opportunity to continue our research work in Ukraine!