

Abstract

As is known, the crystal β-InSe is characterized by its layered structure and unique electronic properties, making it quite valuable for applications in electronics and optoelectronics. On the other hand, MoSe₂, is also a material with a quasi-two-dimensional structure, which has a wide range of potential applications, especially in the field of semiconductor devices and photodetectors. Consequently, studying the electronic properties of the created heterostructures β-InSe/MoSe₂ is of interest. Particularly relevant is the question of their mechanical stability, as only mechanically stable heterostructures can open up new opportunities for the development and optimization of devices based on such materials.

This study investigates the electronic properties and mechanical stability of proposed two models of heterostructures formed by the combination of two quasi-two-dimensional materials: β-InSe and MoSe₂. Using computational methods, we showed that both models of β-InSe/MoSe₂ heterostructures exhibit similar electronic band structures, with indirect bandgaps and overlapping states between the conduction and valence bands. Mechanical properties were also analyzed, revealing that both heterostructure models are mechanically stable. However, one model showed lower anisotropy and higher stability offering potential for future applications in advanced physics technologies.

Energy bands structure of the β-InSe crystal

Lattice parameters are equal: $a=b=4.05 A^{0}$, $c=16.930 A^{0}$

Atom	Х	Y	Ζ	Position
Se	0.33333	0.66667	0.89800	4f
In	0.33333	0.66667	0.15700	4f

Energy bands structure of the MoSe₂ crystal

Lattice parameters are equal: $a=b=3.289 A^{0}$, $c=12.927 A^{0}$

Atom	Х	Y	Ζ	Position
Se	0.33333	0.66667	0.62100	4f
Mo	0.33333	0.66667	0.25000	2c

MODELING OF THE HETEROSTRUCTURES BASED ON β-InSe / MoSe₂

Elementary cell of the β -InSe/MoSe₂ heterostructure and spatial distribution of the electronic density

P-3m1

These heterostructures consist of two sets of translationally inequivalent layers: Se–Mo–Se and Se-In-In-Se structures, which are positioned perpendicular to the hexagonal axis Oz.

Band structure of the β -InSe/MoSe₂ heterostructure for Model 1 Partial densities of the β -InSe/MoSe₂ heterostructure for Model 1

Band structure of the β -InSe/MoSe₂ heterostructure for Model 2

— Mo 5p — Mo 4d MoSe₂/β-InSe (mod 1) — In 5p — In 4d -Se4s — Se 4p - Se 3 -12 -10 Energy (eV)

Partial densities of the β -InSe/MoSe₂ heterostructure for Model 2

Elastic properties for crystals of β-InSe and MoSe₂, and heterostructures β-InSe/MoSe₂

Parameters	β-InSe	MoSe ₂	β -InSe/MoSe ₂ (model 1)	β InSe/MoSe ₂ (model 2)	The reduced parameter of generalized anisot-
Average sound velocity, (m/s)	1967.15637	2840.73943	2118.59962	1485.04842	ropy for the heterostructure - InSe/MoSe ₂ in
Bulk modulus, B (GPa)	37.56016 +/- 1.176	54.91150 +/- 0.777	42.37027 +/- 0.614	36.02267 +/- 2.504	model 1 indicates a lower anisotropy of proper
Shear modulus G (GPa)	18.96337	57.86705	27.31181	22.33745	ties in this heterostructure.
B/G ratio	1.98	0.95	1.55	1.61	
Generalized anisotropy parameter	0.39	1.28	1.07	9.46	
C ₁₁ , GPa	70.58870 +/- 0.577	205.89515 +/- 1.740	110.54075 +/- 0.101	105.18155 +/- 1.297	
C ₁₂ , GPa	24.31135 +/- 2.612	46.54750 +/- 0.468	41.83660 +/- 1.709	39.15100 +/- 2.929	$\int G_{\rm ext} dx / G_{\rm ext} dx \approx 2$ and $G_{\rm ext} dx / G_{\rm ext} dx \approx 4.3$ in-
C ₁₃ , GPa	21.71788 +/- 1.700	13.18543 +/- 0.819	15.19655 +/- 0.256	7.66660 +/- 5.001	$C_{13(m1)}$ / $C_{13(m2)}$ 2 and $C_{44(m1)}$ / $C_{44(m2)}$ 4.5 m ⁻
C ₁₄ , GPa			-1.15200 +/- 1.868	-0.23110 +/- 0.700	dicate a stronger internayer coupling in the net-
C ₁₅ , GPa			0.00000 +/- 0.000	0.00000 +/- 0.000	erostructure β-InSe/MoSe ₂ model 1.
C ₃₃ , GPa	62.93740 +/- 5.114	79.32700 +/- 1.688	64.20485 +/- 1.910	58.26910 +/- 1.122	
C ₄₄ , GPa	13.11115 +/- 2.282	35.13090 +/- 2.198	15.59405 +/- 0.113	3.64465 +/- 0.769	
C ₆₆ , GPa	23.14	79.76	34.35	33.02	The second se
E _{xy}	0.2665	0.2177	0.3586	0.3663	I he estimates of the final enthalpy:
E _x z	0.2531	0.1300	0.1518	0.0834	E _{model1} = -3.817 35 729E+004 eV
E _{yx}	0.2665	0.2177	0.3586	0.3663	$E_{model2} = -3.817$ 33 376E+004 eV
E _{yz}	0.2531	0.1300	0.1518	0.0834	
E _{zx}	0.2289	0.0522	0.0997	0.0531	indicate a higher energetic stability for the β-
E _{zy}	0.2289	0.0522	0.0997	0.0531	InSe/MoSe ₂ heterostructure for Model 1.
Young's Modulus X	58.61206	194.04515	93.11361	90.17991	
Young's Modulus Y	58.61206	194.04515	93.11361	90.17991	
Young's Modulus Z	52.99712	77.94961	61.17375	57.45464	

Evaluation of the Born criterion

Born Criterion	β -InSe	MoSe ₂	β-InSe/MoSe ₂	β-InSe/MoSe ₂
			(model 1)	(model 2)
$\frac{C_{11}}{ C_{12} }$	2.9	4.42	2.64	2.68
$\frac{2C_{13}^2}{C_{13}(C_{13}+C_{13})}$	0.16	0.019	0.04	0.014

The obtained data indicate that the Born criterion conditions are net; therefore, all structures are mechanically stable. However, conidering the anisotropy parameter, minimal energy, and changes in nterlayer bonding, we conclude that model 1 of the β -InSe/MoSe₂ eterostructure is energetically more favorable.

Conclusion:

Energy spectra, spatial distribution of valence electrons, and Mulliken charges were investigated for bulk crystals of β -InSe and MoSe₂, as well as for heterostructures based on them. For both models of the heterostructures, the band gap remains indirect, with the displacement of the main conduction band extremum to the high-symmetry K point of the Brillouin zone for hexagonal symmetry, and there is also a decrease compared to Eg for β -InSe and MoSe₂ crystals, down to the overlapping of the bottom of the conduction band and the top of the valence band. It has been shown that there is no significant difference in the formation of valence band states for the two models of the considered heterostructures.

Mechanical characteristics (elastic moduli, Young's moduli, Poisson's ratios) were calculated for bulk crystals of β -InSe and MoSe₂, as well as for InSe/MoSe₂ heterostructures. It was found that the elastic constants C₁₁, C₁₂, C₁₃, C₃₃, C₄₄, and C₆₆ for both models of the heterostructures are almost identical in numerical value, except for the elastic constants C₁₃ and C₄₄, which characterize the interlayer bonding. Both β -InSe/MoSe₂ heterostructures were determined to be mechanically stable based on the Born criterion assessment.

The reduced parameter of generalized anisotropy for the β -InSe/MoSe₂ heterostructure in model 1 (1.07) indicates lower anisotropy of properties in this heterostructure. Minimal energy and interlayer bonding also confirm the higher stability of this model 1.

Therefore, based on the above results, it can be concluded that the β -InSe/MoSe₂ heterostructure in model 1 proved to be more mechanically stable and energetically favorable, making it promising for further research and potential use in high-tech applications in physics.