Four-particle states of low-dimensional fermions with three-body interaction

Vasyl Polkanov, Volodymyr Pastukhov
cogersum92@gmail.com, volodyapastukhov@gmail.com

Professor Ivan Vakarchuk Department for Theoretica Physics

Model

Present research deals with the two-channel model of three-component fermionic particles with unequal masses that interact through the three-body forces in fractional dimension. We consider a model of three-component Galilean-invariant fermions with different masses $m_{\sigma}(\sigma=1 ; 2 ; 3)$ in ddimensional space [1]. All two-body interactions between particles are assumed to be suppressed, and only the three-body potential [2] is switched on between fermions of different sorts

$$
\begin{aligned}
& H=\sum_{\sigma} \int_{\mathbf{p}} \varepsilon_{\sigma}(\mathbf{p}) f_{\sigma, \mathbf{p}}^{\dagger} f_{\sigma, \mathbf{p}}+\int_{\mathbf{p}}\left[\frac{\mathbf{p}^{2}}{2 M}+\delta \nu_{\Lambda}\right] c_{\mathbf{p}}^{\dagger} c_{\mathbf{p}} \\
& +g \int_{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}} c_{\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}}^{\dagger} f_{3, \mathbf{p}_{3}} f_{2, \mathbf{p}_{2}} f_{1, \mathbf{p}_{1}}+\text { h.c. },
\end{aligned}
$$

where $\varepsilon_{\sigma}(\mathbf{p})=\frac{\mathbf{p}^{2}}{2 m_{\sigma}}, \int_{\mathbf{p}}=\int \frac{d \mathbf{p}}{(2 \pi)^{d}}$ and $M=m_{1}+m_{2}+m_{3}$ is the mass of composite fermion; g and $\delta \nu_{\Lambda}$ are the coupling and the detuning.
The anti-commutators of the field operators are fixed as follows

$$
\left\{c_{\mathbf{p}}, c_{\mathbf{p}^{\prime}}^{\dagger}\right\}=(2 \pi)^{d} \delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right),\left\{f_{\sigma, \mathbf{p}}, f_{\sigma^{\prime}, \mathbf{p}^{\prime}}^{\dagger}\right\}=(2 \pi)^{d} \delta_{\sigma, \sigma^{\prime}} \delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right)
$$

and zero all other pairs.
Renormalization leads to the observable three-body coupling

$$
g_{3}^{-1}=-\frac{\Gamma(1-d)}{(2 \pi)^{d}}\left(\frac{m_{1} m_{2} m_{3}}{M}\right)^{d / 2}\left|\epsilon_{\infty}\right|^{d-1},
$$

where ϵ_{∞} is three-particle bound state energy at the broad resonance.

Four-body problem

The wave function of an arbitrary four-body (composite fermion $+f_{1}$-atom) state with zero center-of-mass momentum reads

$$
\begin{aligned}
& \left|f_{1} c\right\rangle=\int_{\mathbf{p}} B_{\mathbf{p}} f_{1, \mathbf{p}}^{\dagger} c_{-\mathbf{p}}^{\dagger}|0\rangle+\int_{\mathbf{p}_{1}, \mathbf{p}_{1}^{\prime}, \mathbf{p}_{2}} B_{\mathbf{p}_{1} \mathbf{p}_{1}^{\prime}, \mathbf{p}_{2},-\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}} \\
& \times f_{1, \mathbf{p}_{1}}^{\dagger} f_{1, \mathbf{p}_{1}^{\prime}}^{\dagger} f_{2, \mathbf{p}_{2}}^{\dagger} f_{3,-\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}}^{\dagger}|0\rangle,
\end{aligned}
$$

where $B_{\mathbf{p}_{1} \mathbf{p}_{1}^{\prime}, \mathbf{p}_{2},-\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}}=-B_{\mathbf{p}_{1}^{\prime} \mathbf{p}_{1}, \mathbf{p}_{2},-\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}}$ is anti-symmetric function of first two arguments.
Because of the Fermi statistics, the four-body bound states can only occur in the odd-wave channels. The one requiring the deepest potential well is the p-wave with the wave function of the following form $B_{\mathbf{p}}=(\mathbf{n p} / p) B_{p}$ (here B_{p} depends on modulus \mathbf{p} with \mathbf{n} being a unit vector).

Efimov-like effect

Considering the limit of broad resonance $g \rightarrow \infty$ and disappearing three-body bound state $g_{3} \rightarrow \infty$ allows to investigate the conditions for Efimov-like effect appearance.

Region, where the p-wave Efimov-like effect in the four-body sector of the three-component Fermi system with the three-body interaction emerges.

The region under line on the figure above determine a region of the four-body p wave Efimov-like effect in the considered system, with the universal ratio of energy levels

$$
\epsilon_{4}^{(n)} / \epsilon_{4}^{(n+1)}=e^{2 \pi / \eta_{0}}, \quad(n \gg 1)
$$

η_{0} depends only on the spatial dimension and the ratio of total mass of the second and third fermions M_{23} to mass of the first particle m_{1}.

References

[1] V. Polkanov, V. Patukhov, Phys. Rev. A 109, 043322 (2024)
[2] M. Valiente, Phys. Rev. A 100, 013614 (2019)

Numerical results for Efimov-like effect

To verify the predictions about the behavior of our model in the four-particle sector, we have numerically solved the integral equation for four-particle wave functions and binding energies in the p-wave channel for $\mathrm{d}=1.5$ and mass ratios $M_{23} / m_{1}=1 / 50$ small enough to provide a strong induced attractive potential between two f_{1}-atoms when the three-body binding energy is sent to zero $\epsilon_{g} \rightarrow 0$, and coupling $g=\sqrt{\frac{m_{1} m_{2} m_{3}}{M}} \frac{1}{r_{0}^{2-d}}$ is parametrized by scale r_{0} which is related to the effective range. The fourbody p-wave energies $\epsilon_{4}^{(n)}$ are measured in units of $\frac{m_{1}+M}{2 m_{1} M r_{0}^{2}}$, and the numerical prefactors for the first five levels are gathered in the table below.

n	$\left\|\epsilon_{4}^{(n)}\right\|$	$\epsilon_{4}^{(n-1)} / \epsilon_{4}^{(n)}$		
0	4.2250			
1	3.4802×10^{-1}	12.141		The first five eigenvalues $\epsilon_{4}^{(n)}$ (in units of
2	3.5671×10^{-2}	9.7564		$\frac{m_{1}+M}{2 m_{1} M r_{0}^{2}}$) of the four-body problem in the p -
3	3.8086×10^{-3}	9.3668		wave channel. Numerical calculations were
4	4.0949×10^{-4}	9.3008		performed in $\mathrm{d}=1.5$ and for mass ratios
\vdots	\vdots	\vdots		$M_{23}=m_{1} / 50$.
∞	0	9.2909		

In the third column of above table, the ratio of neighboring eigenenergies which should tend to $e^{2 \pi / \eta_{0}}=9.290926 \ldots$ at large n .

The ground state and the first few excited states wave functions $B_{p}^{(n)}$ (unnormalized) of the four-body problem in the p-wave channel.

d=1

For solving $\mathrm{d}=1$ case of problem the measurement units of ϵ_{4} was chosen as three-body bound-state energy ϵ_{g}, then effective range is determined by closeness of the three-body bound state energy to its broad-resonance value $\gamma=\ln \left(\frac{\epsilon_{\infty}}{\epsilon_{g}}\right)$. Then $\gamma=0$ corresponds to zero range $r_{0}=0$ case, while $\gamma>0$ refers to the model with narrow resonance.

The calculations demonstrate that even at the broad resonance $\gamma=0$, which is the most favorable limit for the existence of the four-body bound states, the first level emerges at $m_{1} / m_{2} \approx 2.5$ (the second and the third ones at ≈ 13.0 and ≈ 31.5, respectively)

The four-body ground state wave functions $B_{p}^{(0)}$ (unnormalized) at different values of the effective range and fixed mass ratio $m_{1} / M_{23}=7.75$ in 1 D

