

Ivan Franko National University of Lviv

Four-particle states of low-dimensional fermions with three-body interaction

Vasyl Polkanov, Volodymyr Pastukhov

cogersum92@gmail.com, volodyapastukhov@gmail.com

Professor Ivan Vakarchuk Department for Theoretical Physics

Model

Present research deals with the two-channel model of three-component fermionic particles with unequal masses that interact through the three-body forces in fractional dimension. We consider a model of three-component Galilean-invariant fermions with different masses m_{σ} ($\sigma = 1$; 2; 3) in ddimensional space [1]. All two-body interactions between particles are assumed to be suppressed, and only the three-body potential [2] is switched on between fermions of different sorts

$$H = \sum_{\sigma} \int_{\mathbf{p}} \varepsilon_{\sigma}(\mathbf{p}) f_{\sigma,\mathbf{p}}^{\dagger} f_{\sigma,\mathbf{p}} + \int_{\mathbf{p}} \left[\frac{\mathbf{p}^{2}}{2M} + \delta \nu_{\Lambda} \right] c_{\mathbf{p}}^{\dagger} c_{\mathbf{p}}$$
$$- g \int_{\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}} c_{\mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}}^{\dagger} f_{3,\mathbf{p}_{3}} f_{2,\mathbf{p}_{2}} f_{1,\mathbf{p}_{1}} + \text{h.c.},$$

where $\varepsilon_{\sigma}(\mathbf{p}) = \frac{\mathbf{p}^2}{2m_{\sigma}}$, $\int_{\mathbf{p}} = \int \frac{d\mathbf{p}}{(2\pi)^d}$ and $M = m_1 + m_2 + m_3$ is the mass of

composite fermion; g and $\delta \nu_{\Lambda}$ are the coupling and the detuning. The anti-commutators of the field operators are fixed as follows

$$\{c_{\mathbf{p}}, c_{\mathbf{p}'}^{\dagger}\} = (2\pi)^{d} \delta(\mathbf{p} - \mathbf{p}'), \ \{f_{\sigma, \mathbf{p}}, f_{\sigma', \mathbf{p}'}^{\dagger}\} = (2\pi)^{d} \delta_{\sigma, \sigma'} \delta(\mathbf{p} - \mathbf{p}')$$

and zero all other pairs.

Numerical results for Efimov-like effect

To verify the predictions about the behavior of our model in the four-particle sector, we have numerically solved the integral equation for four-particle wave functions and binding energies in the *p*-wave channel for d=1.5 and mass ratios $M_{23}/m_1 = 1/50$ small enough to provide a strong induced attractive potential between two f_1 -atoms when the three-body binding

energy is sent to zero $\epsilon_g \to 0$, and coupling $g = \sqrt{\frac{m_1 m_2 m_3}{M} \frac{1}{r_0^{2-d}}}$ is parametrized by scale r_0 which is related to the effective range. The fourbody *p*-wave energies $\epsilon_4^{(n)}$ are measured in units of $\frac{m_1 + M}{2m_1 M r_0^2}$, and the

numerical prefactors for the first five levels are gathered in the table below.

n	$ \epsilon_4^{(n)} $	$\epsilon_4^{(n-1)}/\epsilon_4^{(n)}$	
0	4.2250		The first five eigenvalues $\epsilon_{\perp}^{(n)}$ (in units of
1	3.4802×10^{-1}	12.141	$m_1 + M$
2	3.5671×10^{-2}	9.7564	$\frac{Mr_1 + Mr_2}{2mr_2}$) of the four-body problem in the <i>p</i> -
3	3.8086×10^{-3}	9.3668	
4	4.0949×10^{-4}	9.3008	wave channel. Numerical calculations were
			performed in d=1.5 and for mass ratios

----- P ------ P ------- P

Renormalization leads to the observable three-body coupling

$$g_3^{-1} = -\frac{\Gamma(1-d)}{(2\pi)^d} \left(\frac{m_1 m_2 m_3}{M}\right)^{d/2} |\epsilon_{\infty}|^{d-1},$$

where ϵ_{∞} is three-particle bound state energy at the broad resonance.

Four-body problem

The wave function of an arbitrary four-body (composite fermion $+f_1$ -atom) state with zero center-of-mass momentum reads

$$\begin{split} |f_{1}c\rangle &= \int_{\mathbf{p}} B_{\mathbf{p}} f_{1,\mathbf{p}}^{\dagger} c_{-\mathbf{p}}^{\dagger} |0\rangle + \int_{\mathbf{p}_{1},\mathbf{p}_{1}',\mathbf{p}_{2}} B_{\mathbf{p}_{1}\mathbf{p}_{1}',\mathbf{p}_{2},-\mathbf{p}_{1}-\mathbf{p}_{1}'-\mathbf{p}_{2}} \\ &\times f_{1,\mathbf{p}_{1}}^{\dagger} f_{1,\mathbf{p}_{1}'}^{\dagger} f_{2,\mathbf{p}_{2}}^{\dagger} f_{3,-\mathbf{p}_{1}-\mathbf{p}_{1}'-\mathbf{p}_{2}}^{\dagger} |0\rangle, \end{split}$$

where $B_{\mathbf{p}_1\mathbf{p}'_1,\mathbf{p}_2,-\mathbf{p}_1-\mathbf{p}'_1-\mathbf{p}_2} = -B_{\mathbf{p}'_1\mathbf{p}_1,\mathbf{p}_2,-\mathbf{p}_1-\mathbf{p}'_1-\mathbf{p}_2}$ is anti-symmetric function of first two arguments.

Because of the Fermi statistics, the four-body bound states can only occur in the odd-wave channels. The one requiring the deepest potential well is the *p*-wave with the wave function of the following form $B_p = (np/p)B_p$ (here B_p depends on modulus p with n being a unit vector).

Efimov-like effect

Considering the limit of broad resonance $g \to \infty$ and disappearing three-body bound state $g_3 \to \infty$ allows to investigate the conditions for Efimov-like effect appearance.

In the third column of above table, the ratio of neighboring eigenenergies which should tend to $e^{2\pi/\eta_0} = 9.290926...$ at large n.

The ground state and the first few excited states wave functions $B_p^{(n)}$ (unnormalized) of the four-body problem in the *p*-wave channel.

d=1

For solving d = 1 case of problem the measurement units of ϵ_4 was chosen as three-body bound-state energy ϵ_g , then effective range is determined by closeness of the three-body bound state energy to its broad-resonance value

 $\gamma = \ln\left(\frac{\epsilon_{\infty}}{\epsilon_g}\right)$. Then $\gamma = 0$ corresponds to zero range $r_0 = 0$ case, while

 $\gamma > 0$ refers to the model with narrow resonance.

Region, where the *p*-wave Efimov-like effect in the four-body sector of the three-component Fermi system with the three-body interaction emerges.

The region under line on the figure above determine a region of the four-body *p*-wave Efimov-like effect in the considered system, with the universal ratio of energy levels

 $\epsilon_4^{(n)}/\epsilon_4^{(n+1)} = e^{2\pi/\eta_0}, \ (n \gg 1),$

 η_0 depends only on the spatial dimension and the ratio of total mass of the second and third fermions M_{23} to mass of the first particle m_1 .

References

0,3 *m*/

[1] V. Polkanov, V. Patukhov, Phys. Rev. A 109, 043322 (2024)
[2] M. Valiente, Phys. Rev. A 100, 013614 (2019)

The calculations demonstrate that even at the broad resonance $\gamma = 0$, which is the most favorable limit for the existence of the four-body bound states, the first level emerges at $m_1/m_2 \approx 2.5$ (the second and the third ones at ≈ 13.0 and ≈ 31.5 , respectively).

The four-body ground state wave functions $B_p^{(0)}$ (unnormalized) at different values of the effective range and fixed mass ratio $m_1/M_{23} = 7.75$ in 1D.