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Introduction

The scattering of gas flow on an obstacle results in the
formation of nonequilibrium steady states (NESS), like
stationary obstacle wake. Often such systems undergo
nonequilibrium phase transition leading to the onset of
nonlinear steady-state gas structures at certain criti-
cal parameters, in particular, the structure like stratum
formed, due to the blockade effect in a gas. Such struc-
tures can be considered as the growth of a nucleus of a
dense gas phase near an obstacle which plays the role of
a nucleation center. It is natural to suppose that the nu-
cleus boundary (usually having the kink-like form) has
to protect the state of its center (obstacle) against the
fluctuations in a gas as well as the noise of the external
driving field. Resorting to the particular case of quasi-1D
case of the driven lattice gas doped with static impuri-
ties in a narrow channel with ring topology [1], we show:
• This nonequilibrium transition is accompanied by the

emergence of local invariant. The obstacle state
behaves as local firs integral (adiabatic invariant),
becomes insensitive to the changes of system
parameters, and to the fluctuations in a gas, in
particular to the external drive noise.

• This transition can be considered as one with
creation of the pair of topological defect and
anti-defect (kink and anti-kink), one of which (anti-)
is pined by obstacle, with changes of the main scatter
of gas flow from structural lattice defect (obstacle) to
topological defect in a gas (boundary of dense phase).

• The protection effect of obstacle state against gas
fluctuations manifest itself in the strong localization
of fluctuations near defect (domain wall of dense gas
phase) and in the total their suppression at
anti-defect (obstacle).

Model

We consider the limiting case of two component driving
lattice gas in narrow channel with ring geometry. One of
the components is assumed to be static and describes im-
purity particles,those partially occupy channel sell with
mean concentration U , which corresponds to partially
penetrable impurity site (obstacle) in the quasi-one di-
mensional limit [1]. To describe nonequilibrium transi-
tion for NESSs and gas fluctuations near them we use the
combination of the local equilibrium approach and the
mean-field approximation neglecting the fast processes
and short-range correlations [2–4]. This enables to de-
scribe the gas kinetics for the long time scales in the form
of the mean field Smoluchowski equation for mean gas
concentration at lattice sites nk

∂tnk = f g
k (n⃗) =

∑
j=k±1

(νjknjhk − νkjnkhj), (1)

where hk = 1 − uk − nk, and Uk = Uδk,0 is given distri-
bution of impurity particles, the asymmetry of hopping
rates for back-forward particle jumps νk,k±1 = ν(1±g) is
caused by the external driving field g. The steady state
solution ns

k of this equation (∂tnk = 0 or f⃗ g(n⃗s) = 0)
determines NESSs which undergo nonequilibrium tran-
sition with the formation of two-domain gas structure
at certain critical system parameters (n̄c, gc, Uc), here
n̄ is mean gas concentration. The transition phase dia-
gram, and typical behavior of gas density distributions
are shown on Figs.1 and 2. The gas density fluctuations
δnk near nonequilibrium steady states ns

k is governed by
the Langevin equation that, for small δnk, takes the form
∂tδnk =

∑
j

[
νjk

(
hs

kδnj − ns
jδnk

)
− (k ↔ j)

]
+ δĨk,

(2)
with correlation function of the Langevin source〈

δĨk(t)δĨk′ (t′)
〉

≈ 2δ (t − t′)
∑

j

νkjn
s
khs

j (δkk′ − δjk′) .

(3)
The nonequilibrium transition with the formation of two-
domain NESS gas structure is characterized by the series
of specific local effects.
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Figure 1: Periodic chain with ring topology and the impurity site (cell): ν± = ν(1 ± g) are particle hopping rates along and against the
direction of nonconservative field g. (a) Typical NESSs in subcritical regime, at n̄ = 0.3, U = 0.6, and g = 0.02, 0.1, 0.18 < gc. (b) Typical
NESSs in overcritical regime at n̄ = 0.3, U = 0.6, and g = 0.6, 0.7, 0.8 > gc. The number of lattice sites L0 = 401, the ring length 2L = 400ℓ,
with lattice constant ℓ. The distributions in (a) and (b) were obtained from direct numerical solutions of the mean-field Eq. (1) as steady-state
profiles established after ≈ 1.6 × 107 time steps of evolution since the driving field was switched from g0 = 0 to g at t0 = 0. The resulting
NESS was regarded as finally established if maxk[nk(τ ) − nk(τ − ∆τ )] ≤ 10−30 with ∆τ = 0.01, where τ = νt.

1. Emergence of Local Invariants

After the transition, the state of impurity site ns
0 =

(1−U)/2, site occupancy by gas particles, demonstrates
invariant behavior, becomes insensitive to the farther
changes of the main system driving parameters such as
gas concentration n̄ and external driving field g, Fig. 1.
This local invariant behaves like the local first integral
(for example, (f⃗ g,∇n⃗)n0|n⃗s(g′) ≈ ns

0 at sudden switching
of external field from g′ to g), or as adiabatic invariant at
least that was illustrated numerically, Fig. 2. This invari-
ant describes the half-filling saturation of impurity site
and serves as the local order parameter, on a par with in-
tegral ones, for this transition, see Fig. 2. For such local
invariant, n0(g, n̄) = const, to exist is necessary strong
correlated behavior or synchronization of the the impu-
rity edge states at farther changes of g and/or n̄, that
is described by the second local invariant n−1 + n1 = 1.
Thus, this transition is accompanied by the one from the
skin to edge-correlation effect, see [5–7].

2. Nonequilibrium Protection Effect

As a result, the state of impurity site, ns
0 = (1 − U)/2,

becomes insensitive to the gas fluctuations and the noise
of the external driving field g, see Fig. 1 and 2. The
nonequilibrium transition with the onset of two-domain
gas structure can be considered as the creation of the pair
of topological defects: the kink and anti-kink. These two
topological defects in the gas correspond to two domain
walls spatially limiting the dense gas phase. The first
defect (kink) is “free” as it position is determined by the
driving parameters as external field g, gas concentration
n̄. The anti-defect (anti-kink) is pinned by impurity site.
Below the transition, the gas flow scatters on the struc-
tural lattice defect, i.e., impurity-site, that leads to the
effect similar to the skin-effect [14–18]. After the tran-
sition, the flow scatters on free topological defect (kink)
that protects own anti-defect from change of external
condition, i.e., protects the state of impurity site. The
nonequilibrium protection effect most pronouns mani-
fests itself in the spatial localization of gas fluctuations.

Transi�ons

Figure 2: Left: Numerical illustration of the emergence of local invariants (local first integrals) n0(τ ) = (1 − U)/2 = const and n±1(τ ) =
n1(τ )+n−1(τ ) ≈ 1 after nonequilibrium transition at g > gc for the case of driving field noise g(τ ) = g+δg(τ ). Exploited noise sample is shown
at the top panel and has switching frequency λ = 0.02. The drive g(t) fluctuates around g = 0.2 (subcritical regime) or g = 0.8 (overcritical
regime) with amplitude |δg(t)| ≤ 0.1. Here, ring length 2L = 400ℓ, average density (filling fraction) n̄ = 0.3, and U = 0.6. Transition inset
for n1(τ ) shows relaxation between |g = 0.7⟩ ⇄ |g = 0.9⟩ with dominant asymptotic behavior ∼ e−γτ , implying decay rate γ ≫ λ. Right:
Two-dimensional projections of the critical surface for the phase diagram given in (U, n̄, g) parameter space: (a) (U, n̄)-projection at g = 0.5,
(b) (g, U)-projection at n̄ = 0.3, and (c) (g, n̄)-projection at U = 0.6. Analytically estimated phase boundaries (solid lines) are given by
relation U(n̄) = 1− [4n̄(1− n̄)]/(3− 4n̄). Center inset: (i) Occupations of impurity site n0, its edges n±1, and their half-sum as a function of
external field g. (ii) Inter-particle correlations at the nearest sites δnkδnk+1, where δnk = nk − n̄, and (. . . ) = L−1

0
∑

k(. . . ). Here, n̄ = 0.3,
U = 0.6, and L0 = 401.

Model notes

In contrast to the most Asymmetrical Simple Exclusion Processes (ASEP) models on a ring resulting in the blockade
effect in a gas caused by an obstacle [8–9], where obstacles often realized via defect bonds, so called slow bonds [10–13],
as locally reduced inter-site transition rates or as reduced inter-site exchange rate between particles of different sorts, we
implement the obstacle by means static impurity particles as the partially transparent impurity-site that corresponds
to the narrow channel cell partially occupied by impurity (heavy component) gas particles with concentration U . This
leads not only to the decreasing of the occupation probability of impurity-site by gas particles (due to the decreasing
of possible vacancies, 1 − U), but also to the reducing of the transition rates of particles to this site from nearest
neighbor ones. Qualitatively, U can be associated with the effective repulsion potential created by impurity atoms
located in the channel cell. Another difference is to consider ASEP induced by an external driving field. As a result, the
nonequilibrium transition to the blockade regime occurs not only at certain critical values of mean gas concentration
and obstacle transparency parameters, but also critically depends on the driving field value g.
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