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Abstract

We employ the representation properties of the rotation group through the apparatus of
spherical tensor operators to construct a many-body Hamiltonian of pairwise interacting spin-
F atoms. This Hamiltonian, valid for finite-range potentials, includes the effects of multipolar
exchange interaction as well as the coupling of any multipole moment (dipole, quadrupole,
octupole, etc.) with an external field. It can be applied to study the collective phenomena in
quantum Bose and Fermi gases of high-spin atoms, whose interaction is not specified by s-wave
scattering length associated with delta-like contact pseudopotential. In particular, we examine
all magnetic states emerging in a gas of spin-1 atoms with condensate. Besides, following the
reduced description method of quantum systems, we obtain the respective kinetic equation
in the collisionless approximation. Next, we employ it to spin-3/2 atoms to explore the high-
frequency collective excitations known as zero sound.

Hamiltonian for arbitrary spin-F atoms
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H0 also includes the coupling of a multipole moment with an external field. The coupling is
specified by two irreducible tensors hi

m and T i
m, where h

i
m is constructed from the components

of the physical external field and T i
m represents a spherical tensor operator and describes

the multipole degrees of freedom. U [i](p1 − p4) are the Fourier transforms of the energies
corresponding to direct (i = 0) and multipolar (i = 1, . . . , 2F ) interactions.

Zero sound in spin-3/2 atomic gas

In the case of small inhomogeneity and weak interaction, the Wigner density matrix fαβ(x,p)
satisfies the following kinetic equation:
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The particle energy εαβ(x,p), being dependent both on interaction amplitudes and Wigner
density matrix includes the mean-field effects,
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The specific feature of zero-sound is that it propagates even at zero temperature. In this

temperature limit, the distribution function, fαβ(p) = f
[α]
p δαβ, takes the form
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Linearising the kinetic equation, Eq. (2), we come to the dimensionless dispersion equation:

Y (w, h, κ) ≈ 0, (3)
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where w =
ω

k

√
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2εF(0)
is the dimensionless speed of zero sound. Three angles are defined as

follows: κ = ∠(p,k), θ = ∠(p′,k) and χ = ∠(p,p′).

Fig. 1: (left panel) The solutions of Eq. (3) are realized at the intersection of the function Y (w, h0, κ) with a horizontal solid

line. (right panel) The dependence of the decrement γ, ImY (w, h, κ) ∝ γ, on w at fixed magnetic field h0 = 0.2εF(0). The

magenta dashed lines indicate the positions of poles. All calculations are performed for the following values of the physical

parameters: n = 1015 cm−3, a(i) = 100a0, r
(0)
0 = 760a0, r

(1)
0 = 780a0, r

(2)
0 = 800a0, r

(3)
0 = 820a0, and h0 = 0.2εF(0), where

a0 ≈ 53 pm is the Bohr radius.

For more details, see J. Phys. A: Math. Theor. 56 (2023) 435001. https://doi.org/10.1088/1751-8121/acfc0a

Spin-1 BEC

The Hamiltonian (1), can be also applied to describe the magnetic states of a weakly inter-
acting Bose gas of spin-1 atoms with condensate. To this end, we employ the well-known
Bogoliubov model, which treats the creation and annihilation operators with zero momentum
as c-numbers (a0α →

√
N0ζα, a†0α →

√
N0ζ

∗
α, where ζα is the order parameter or the

normalized condensate state vector).
The state vector ζα is found by minimizing the grand thermodynamic potential.
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where h, χ are the field parameters, µ̃ is chemical potential, n0 is condensate density, v =
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)
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)
, M is absolute value of magnetization.
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Fig. 2: Magnetic state diagrams of spin-1 BEC, showing magnetization Mz/n0 (by colour) versus dimensionless magnetic fields

χ/c and h/c for c > 0 (left panels) and c < 0 (right panels). Each row corresponds to certain regime of BA-state. The white

and yellow lines denote the second- and first-order phase transitions, respectively.

For more details, see J. Phys. A: Math. Theor. 55 (2022) 405003. https://doi.org/10.1088/1751-8121/ac9098

Summary

• We have obtained a many-body Hamiltonian of spin-F atoms, which includes the effects of
multipolar exchange interaction and the coupling of a multipole moment with an external
field.

• The Hamiltonian makes sense only for finite-range interatomic interaction. The zero-range
(pseudo)potentials parameterized by s-wave scattering lengths do not give rise the multi-
polar exchange interactions.

• Fermi gas. We have employed the Hamiltonian with multipolar exchange interactions to
derive the kinetic equation for spin-3/2 atoms in the collisionless approximation.

• We have applied the resulting equation to study high-frequency oscillations known as zero
sound.

• We have shown that there are 8 zero-sound modes: 2 (‘slow’ and ‘fast’ waves) for each
spin projections. The ‘slow’ waves are characterized by a larger damping factor than the
‘fast’ ones. The only one ‘fast’ mode corresponding to the spin projection mF = 3/2 has
a zero decrement.

• Bose gas. We have also applied the proposed Hamiltonian to study all possible magnetic
states emerging in a gas of spin-1 atoms with BEC.

• We have found four magnetic states: ferromagnetic, quadrupolar, paramagnetic as well
as broken-axisymmetry state. The latter is realized due to the coupling of a quadrupole
moment with a magnetic field (quadratic Zeemean effect).
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