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Abstract. We study the trace class perturbations of the whole-line, dis-
crete Laplacian and obtain a new bound for the perturbation determi-
nant of the corresponding non-self-adjoint Jacobi operator. Based on
this bound, we refine the Lieb–Thirring inequality due to Hansmann
and Katriel. The spectral enclosure for such operators is also discussed.
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Introduction

In the last 2 decades, there was a splash of activity around the spectral
theory of non-self-adjoint perturbations of some classical operators of mathe-
matical physics, such as the Laplace and Dirac operators on the whole space,
their fractional powers, and others. Recently, there has been some interest
in studying certain discrete models of the above problem. In particular, the
structure of the spectrum for compact, non-self-adjoint perturbations of the
free Jacobi and the discrete Dirac operators has attracted much attention
lately. Actually, the problem concerns the discrete component of the spec-
trum and the rate of its accumulation to the essential spectrum. Such types
of results under various assumptions on the perturbations are united under
a common name Lieb–Thirring inequalities. In the case of the free whole-line
Jacobi operator, such inequalities include the distance from an eigenvalue to
the whole essential spectrum [−2, 2], as well as the distance to its endpoints.
For a nice account of the existing results on the Lieb–Thirring inequalities for
non-self-adjoint Jacobi operators, the reader may consult two recent surveys
[4], [7, Section 5.13], and references therein.
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The main object under consideration is a whole-line Jacobi matrix

J = J({aj}, {bj}, {cj})j∈Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . . . . . . . .
a−1 b0 c0

a0 b1 c1

a1 b2 c2

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

, (0.1)

with uniformly bounded complex entries and ancn �= 0. The spectral theory
of the underlying non-self-adjoint Jacobi operator includes, among others,
the structure of their spectra. We denote by J0 the discrete Laplacian, i.e.,
J0 = J({1}, {0}, {1}). If J − J0 is a compact operator, that is,

lim
n→±∞ an − 1 = lim

n→±∞ cn − 1 = lim
n→±∞ bn = 0,

the geometric image of the spectrum is plainly evident

σ(J) = σess(J0) ∪ σd(J) = [−2, 2] ∪ σd(J),

the discrete component σd(J) is an at most countable set of points in C\[−2, 2]
with the only possible limit points on [−2, 2]. To get some quantitative infor-
mation on the rate of accumulation one has to impose further assumptions
on the perturbation. Our case of study in this note is the trace class pertur-
bations of the discrete Laplacian

J − J0 ∈ S1 ⇔
∞∑

n=−∞
(|1 − an| + |bn| + |1 − cn|) < ∞. (0.2)

Now the discrete spectrum is the set of isolated eigenvalues of finite algebraic
multiplicity.

The currently best result which governs the behavior of the discrete
spectrum is due to Hansmann and Katriel [9, Theorem 1]. It states that for
each ε ∈ (0, 1) there is a constant C(ε) > 0 so that

∑
λ∈σd(J)

dist(λ, [−2, 2])1+ε

|λ2 − 4| 1
2+ ε

4
≤ C(ε)‖J − J0‖1. (0.3)

The result is sharp, as shown by Bögli and Štampach [1], in the sense that
(0.3) is false for ε = 0. Yet the question arises naturally whether it is possible
to drop at least one of the two small parameters on the left side. We answer
this question affirmatively in the paper. The price we pay is constant on the
right side.

Theorem 0.1. Let J − J0 ∈ S1. Then for each ε ∈ (0, 1) there is a constant
C(ε) > 0 so that

∑
λ∈σd(J)

dist(λ, [−2, 2])

|λ2 − 4| 1−ε
2

≤ C(ε)Δ, Δ :=
∞∑

n=−∞
(|bn| + |1 − ancn|). (0.4)
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If J is a discrete Schrödinger operator, that is, an = cn ≡ 1, then
∑

λ∈σd(J)

dist(λ, [−2, 2])

|λ2 − 4| 1−ε
2

≤ C(ε)‖J − J0‖1. (0.5)

Remark 0.2. The appearance of the value Δ in place of ‖J −J0‖1 might seem
reasonable. Indeed, given a Jacobi matrix J , consider a class S(J) of Jacobi
matrices

S(J) = {Ĵ := T −1JT, T = diag(tj)j∈Z is a diagonal isomorphism of �2(Z)},

Ĵ = J
({ajrj}, {bj}, {cjr−1

j })
, rn =

tn

tn+1
, n ∈ Z.

As Ĵ is similar to J , the equality σd(Ĵ) = σd(J) holds. Thereby, the left side
of (0.4) is constant within the class S(J), and so is the value Δ, in contrast to
‖J − J0‖1. For the class S(J0) both sides of (0.4) vanish, whereas ‖J − J0‖1,
J ∈ S(J0), can be arbitrarily large.

Next, |1 − ancn| ≤ |1 − an| + |1 − cn| + |1 − an||1 − cn|, and so

Δ ≤ 3‖J − J0‖1 + ‖J − J0‖2.

We see that for small perturbations the value Δ has at least the same order
as ‖J − J0‖1.

The so-called perturbation determinant

L(λ, J) := det(I + (J − J0)(J0 − λ)−1),

introduced by Krein [8] in the late 1950s, comes in as a principal analytic
tool. The main feature of this analytic function on the resolvent set ρ(J0) =
C\[−2, 2] is that the zero divisor agrees with the discrete spectrum of the
perturbed operator J , and moreover, the multiplicity of each zero equals
the algebraic multiplicity of the corresponding eigenvalue. So the original
problem of the spectral theory can be restated as the classical problem of
the zero distributions of analytic functions, which goes back to Jensen and
Blaschke.

The argument in [9] pursues in two steps. The first one results in a
certain bound for the perturbation determinant, typical for the functions of
non-radial growth. The classes of such analytic (and subharmonic) functions
in the unit disk were introduced and studied in [2,6] (for some advances see
[3]). The Blaschke-type conditions for the zero sets (Riesz measures) were
proved therein, with an important amplification in [9, Theorem 4], better
adapted for applications. The second step is just the latter result applied to
the bound mentioned above.

In our approach to the problem, the argument in the first step is to-
tally different. Instead of certain operator-theoretic means and the Fourier
transform, we deal with the associated three-term recurrence relation

ak−1uk−1 + bkuk + ckuk+1 = λ(z)uk, k ∈ Z, λ(z) = z +
1
z
, (0.6)

and its modifications. Here λ(·) is the Zhukovsky function which maps the
unit disk onto the resolvent set ρ(J0) = C\[−2, 2]. The solution of (0.6)
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u = (uk)k∈Z from �2(Z) is exactly the eigenvector of J with the eigenvalue λ.
Next, the solutions u± = (u±

k )k∈Z are called the Jost solutions at ±∞ if

lim
n→±∞ z∓nu±

n (z) = 1, z ∈ D0 := D\{0}. (0.7)

We study the Jost solutions by reducing the difference equation (0.6) to
a Volterra-type discrete integral equation, see, e.g., [12, Section 7.5], [5].
The bounds for the Jost solutions stem from the successive approximations
method. The perturbation determinant arises as the Wronskian of the Jost
solutions, so its bound is then straightforward.

Note also, that the relation

|L(z, J) − 1| ≤ (4x + 5x2)e4x, x :=
2|z|

|1 − z2| (Δ
1/2 + Δ) (0.8)

for z in the open unit disk D := {|z| < 1} (see (2.5) and Remark 2.1 below)
provides some information about the spectral enclosure.

1. Jost Solutions and Discrete Volterra Equations

The following two companions of the main difference equation (0.6) are of
particular concern

vk−1(z) + bkvk(z) + akckvk+1(z) =
(
z +

1
z

)
vk(z), k ∈ Z, (1.1)

and

ak−1ck−1wk−1(z) + bkwk(z) + wk+1(z) =
(
z +

1
z

)
wk(z), k ∈ Z, (1.2)

z ∈ D0. Put

αn :=
n−1∏

j=−∞
aj , γn :=

n−1∏
j=−∞

c−1
j , n ∈ Z. (1.3)

It is easy to see that u = (uk) is a solution of (0.6) if and only if

uk = αkvk,
(
uk = γkwk

)
, k ∈ Z,

where v = (vk) (w = (wk)) is a solution of (1.1) ((1.2)), respectively. In
particular, if u± = (u±

k ) are the Jost solutions of (0.6), then

u+
n =

∞∏
j=n

a−1
j v+

n =
∞∏

j=n

cj w+
n ,

u−
n =

n−1∏
j=−∞

c−1
j w−

n =
n−1∏

j=−∞
aj v−

n ,

(1.4)

where v± = (u±
k ) (w± = (w±

k )) are the Jost solutions of (1.1) ((1.2)), respec-
tively.

We are aimed at obtaining the bounds for the Jost solutions v+ and w−

by reducing the difference equations to the Volterra-type discrete integral
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equations. The unity of the corresponding coefficients (the first one in (1.1)
and the third one in (1.2)) appears to be crucial.

Define the (non-symmetric) Green kernels by

Gr(n,m; z) :=
{

zm−n−zn−m

z−z−1 , m ≥ n,

0, m ≤ n,

Gl(n,m; z) :=
{

0, m ≥ n,
zn−m−zm−n

z−z−1 , m ≤ n,
n,m ∈ Z, z ∈ D0.

(1.5)

The basic property of the kernels can be verified directly

Gr,l(n,m − 1; z) + Gr,l(n,m + 1; z) −
(
z +

1
z

)
Gr,l(n,m; z) = δn,m,

Gr,l(n − 1,m; z) + Gr,l(n + 1,m; z) −
(
z +

1
z

)
Gr,l(n,m; z) = δn,m.

(1.6)

The kernels
Tr(n,m; z) := −bmGr(n,m; z) + (1 − am−1cm−1)Gr(n,m − 1; z),

Tl(n,m; z) := −bmGl(n,m; z) + (1 − amcm)Gl(n,m + 1; z), z ∈ D0,
(1.7)

n,m ∈ Z, are the key players of the game.

Theorem 1.1. The Jost solution v+ = (v+
k ) of the difference equation (1.1)

at +∞ satisfies the discrete Volterra equation

v+
n (z) = zn +

∞∑
m=n+1

Tr(n,m; z)v+
m(z), n ∈ Z, z ∈ D0. (1.8)

Conversely, each solution v = (vn) of (1.8) solves (1.1).
Similarly, the Jost solution w− = (w−

k ) of (1.2) at −∞ satisfies the
discrete Volterra equation

w−
n (z) = z−n +

n−1∑
m=−∞

Tl(n,m; z)w−
m(z), n ∈ Z, z ∈ D0. (1.9)

Conversely, each solution w = (wn) of (1.9) solves (1.2).

Proof. We multiply the first relation (1.6) for Gr by v+
m, (1.1) by Gr(n,m),

and subtract the later from the former[
Gr(n,m + 1)v+

m − Gr(n,m)v+
m−1

]
+

[
−bmGr(n,m) + Gr(n,m − 1)

]
v+

m

− amcmGr(n,m)v+
m+1 = δn,mv+

m.

Next, taking into account that Gr(n, n + 1) = 1, Gr(n, n) = 0, we sum up
over m from n + 1 to N

Gr(n,N + 1)v+
N +

N∑
m=n+1

[
−bmGr(n,m) + Gr(n,m − 1)

]
v+

m

−
N∑

m=n

amcmGr(n,m)v+
m+1 = v+

n ,
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or

v+
n = Gr(n,N + 1)v+

N − aNcNGr(n,N)v+
N+1 +

N∑
m=n+1

Tr(n,m)v+
m.

The latter equality holds for an arbitrary solution of (1.1). If v+ is the Jost
solution at +∞, then, by (1.5),

lim
N→∞

Gr(n,N + 1)v+
N − aNcNGr(n,N)v+

N+1 = zn,

and (1.8) follows.
The direct reasoning for (1.2) is the same. We multiply the first relation

(1.6) for Gl by w−
m, (1.2) by Gl(n,m), and subtract the later from the former

[
Gl(n,m − 1)w−

m − Gl(n,m)w−
m−1

]
+

[
−bmGl(n,m) + Gr(n,m + 1)

]
w−

m

− am−1cm−1Gl(n,m)w−
m−1 = δn,mw−

m.

The summation over m from −N to n − 1 gives, as above

w−
n = Gl(n,−N − 1)w−

−N − a−N−1c−N−1Gl(n,−N)w−
−N−1

+
n−1∑

m=−N

Tl(n,m)w−
m.

If w− is the Jost solution of (1.2) at −∞, then

lim
N→∞

Gl(n,−N − 1)w−
−N − a−N−1c−N−1Gl(n,−N)w−

−N−1 = z−n,

and (1.9) follows.
To prove the converse statements, let v = (vn) be a solution of (1.8).

Then

vn−1 + vn+1 =
(
z +

1
z

)
zn + Tr(n − 1, n)vn + Tr(n − 1, n + 1)vn+1

+
∞∑

m=n+2

[
Tr(n − 1,m) + Tr(n + 1,m)

]
vm.

But
Tr(n − 1, n)vn = −bnvn,

Tr(n − 1, n + 1)vn+1 = −
(
z +

1
z

)
bn+1vn+1 + (1 − ancn)vn+1

=
(
z +

1
z

)
Tr(n, n + 1)vn+1 + (1 − ancn)vn+1,

Tr(n − 1,m) + Tr(n + 1,m) =
(
z +

1
z

)
Tr(n, n + 1).

Finally,

vn−1 + vn+1 = −bnvn + (1 − ancn)vn+1 +
(
z +

1

z

) (
zn +

∞∑
m=n+1

Tr(n, m)vm

)
,

which is (1.1). The proof for the second converse statement is identical. �
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It is convenient and advisable introducing new variables in both (1.8)
and (1.9)

fr
m := v+

mz−m − 1, T̃r(n,m; z) := Tr(n,m; z)zm−n,

f l
m := w−

mzm − 1, T̃l(n,m; z) := Tl(n,m; z)zn−m,
(1.10)

so the Volterra equations turn into

fr
n(z) = gr

n(z) +
∞∑

m=n+1

T̃r(n,m; z)fr
m(z),

gr
n(z) :=

∞∑
m=n+1

T̃r(n,m; z),

(1.11)

and

f l
n(z) = gl

n(z) +
n−1∑

m=−∞
T̃l(n,m; z)f l

m(z),

gl
n(z) :=

n−1∑
m=−∞

T̃l(n,m; z).

(1.12)

These are better than the original ones owing to the simple analytic proper-
ties of the kernels T̃r,l. Indeed, it is not hard to verify that T̃r,l(n,m; ·) are
polynomials of z, and

∣∣T̃r(n,m; z)
∣∣ ≤ δr

m min
{

(m − n)+, 2|z|
|z2−1|

}
,

δr
m := |bm| + |1 − am−1cm−1|, n,m ∈ Z, z ∈ D, (1.13)

∣∣T̃l(n,m; z)
∣∣ ≤ δl

m min
{

(n − m)+, 2|z|
|z2−1|

}
,

δl
m := |bm| + |1 − amcm|, n,m ∈ Z, z ∈ D. (1.14)

In particular,
∣∣T̃r,l(n,m; z)

∣∣ ≤ δr,l
m |ω(z)|, ω(z) :=

2z

1 − z2
, z ∈ D1 := D\{±1}.

(1.15)

So, the series for gr,l
n converge absolutely and uniformly on each compact

subset of D, which omits ±1, and

|gr,l
n (z)| ≤ |ω(z)|Δr,l

n , Δr
n :=

∞∑
m=n+1

δr
m, Δl

n :=
n−1∑

m=−∞
δl
m.

According to the general result [12, Lemma 7.8] concerning the discrete
Volterra equations, we have for n ∈ Z and z ∈ D1

|fr
n(z)| = |z−nv+

n − 1| ≤ |ω(z)|Δr
n exp

{|ω(z)|Δr
n

}
,

|f l
n(z)| = |znw−

n − 1| ≤ |ω(z)|Δl
n exp

{|ω(z)|Δl
n

}
,

(1.16)
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or
|v+

n − zn| ≤ |z|n|ω(z)|Δr
n exp

{|ω(z)|Δr
n

}
,

|w−
n − z−n| ≤ |z|−n|ω(z)|Δl

n exp
{|ω(z)|Δl

n

}
.

(1.17)

2. The Wronskian and the Lieb–Thirring Inequality

Let us go back to the main equation (0.6). Given its two solutions u′ = (u′
n)

and u′′ = (u′′
n), the equality below is obvious

an−1(u′
n−1u

′′
n − u′

nu′′
n−1) = cn(u′

nu′′
n+1 − u′

n+1u
′′
n).

The Wronskian W (u′, u′′) is naturally defined as

W (u′, u′′) := βn(u′
nu′′

n+1 − u′
n+1u

′′
n), βn := an

n∏
j=−∞

cj

aj
.

Such choice of βn makes the Wronskian independent of n.
From now on we put u′ = u+, u′′ = u−. By the transition formulas

(1.4), we can express W (u+, u−) in terms of v+ and w−:

W (u+, u−) = βn(u+
n u−

n+1 − u+
n+1u

−
n )

= βn

( ∞∏
j=n

a−1
j

n∏
j=−∞

c−1
j v+

n w−
n+1 −

∞∏
j=n+1

a−1
j

n−1∏
j=−∞

c−1
j v+

n+1w
−
n

)

=
∞∏

j=−∞
a−1

j (v+
n w−

n+1 − ancn v+
n+1w

−
n ).

So the bound for the Wronskian will follows from the inequalities (1.17). Note
also that

Δr,l
n ≤ Δ :=

∞∑
j=−∞

(|bj | + |1 − ajcj |), n ∈ Z.

We are now ready for

Proof of Theorem 0.1. Put

U(z) :=
ω(z)

2

∞∏
j=−∞

ajW (u+, u−)

=
ω(z)

2
(
v+
0 (z)w−

1 (z) − v+
1 (z)w−

0 (z) + (1 − a0c0)v+
1 (z)w−

0 (z)
)
.

(2.1)

If

pj(z) := v+
j (z) − zj , qj(z) := w−

j (z) − z−j , j = 0, 1,

then

U(z) :=
ω(z)

2

[
(1 + p0(z))(z−1 + q1(z)) − (z + p1(z))(1 + q0(z))

+ (1 − a0c0)v+
1 (z)w−

0 (z)
]

= 1 +
ω(z)

2
d(z),

d(z) = d1(z) − d2(z) + d3(z),
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where
d1(z) := q1(z) + z−1p0(z) + p0(z)q1(z),

d2(z) := p1(z) + zq0(z) + p1(z)q0(z),

d3(z) := (1 − a0c0)v+
1 (z)w−

0 (z).

We proceed with the upper bound for the function U term by term.
1. For d1 we have

|ω(z)|
2

|d1(z)| ≤ |ω(z)|
2

(|q1(z)| + |z−1p0(z)| + |p0(z)q1(z)|).
In view of (1.17)

|ω(z)|
2

(|q1(z)| + |z−1p0(z)|) ≤ |ω(z)|2
|z| Δe|ω(z)|Δ,

|ω(z)|
2

|p0(z)q1(z)| ≤ |ω(z)|3
2|z| Δ2e2|ω(z)|Δ ≤ |ω(z)|2

2|z| Δe3|ω(z)|Δ,

and so
|ω(z)|

2
|d1(z)| ≤ 3|ω(z)|2

2|z| Δe3|ω(z)|Δ.

Next, it is clear that

|1 − z2| + |z| ≥ 1, 1 +
|ω(z)|

2
≥ |ω(z)|

2|z|
or ∣∣∣∣

ω(z)
z

∣∣∣∣ ≤ 2(1 + |ω(z)|).
Hence,

3|ω(z)|2
2|z| ≤ 3|ω(z)|(1 + |ω(z)|)

and finally
|ω(z)|

2
|d1(z)| ≤ 3(|ω(z)| + |ω(z)|2)Δe3|ω(z)|Δ

≤ 3
{|ω(z)|(Δ1/2 + Δ) + |ω(z)|2(Δ1/2 + Δ)2

}
e3|ω(z)|(Δ1/2+Δ).

(2.2)

2. For d2 we have
|ω(z)|

2
|d2(z)| ≤ |ω(z)|

2
(|p1(z)| + |zq0(z)| + |p1(z)q0(z)|).

It is immediate from (1.17) that

|p1(z)| ≤ |ω(z)|Δe|ω(z)Δ, |q0(z)| ≤ |ω(z)|Δe|ω(z)Δ,

|p1(z)q0(z)| ≤ |ω(z)|2Δ2e2|ω(z)Δ,

and so
|ω(z)|

2
|d2(z)| ≤ |ω(z)|2Δe|ω(z)|Δ +

|ω(z)|3
2

Δ2e2|ω(z)|Δ

≤ 2|ω(z)|2Δe3|ω(z)|Δ ≤ 2|ω(z)|2(Δ1/2 + Δ)2 e3|ω(z)|(Δ1/2+Δ).

(2.3)
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3. For d3 we have by (1.17),

|ω(z)|
2

|d3(z)| ≤ |ω(z)|
2

Δ
(
1 + |ω(z)|Δe|ω(z)|Δ

)2

,

and since 1 + xex ≤ e2x for x ≥ 0, then

|ω(z)|
2

|d3(z)| ≤ |ω(z)|
2

Δe4|ω(z)|Δ ≤ |ω(z)|
2

(Δ1/2 + Δ)e4|ω(z)|(Δ1/2+Δ).

(2.4)

A combination of (2.2)–(2.4) produces the following bound for U

|U(z) − 1| ≤ (4x + 5x2)e4x, x := |ω(z)|(Δ1/2 + Δ),

|U(z)| ≤ (1 + 4x + 5x2)e4x ≤ e8x.
(2.5)

By the non-self-adjoint version of [11, Proposition 10.6] (the calculation
there is algebraic and so immediately extends to the non-self-adjoint case),
U(·) = L(·, J), so we come to the bound for the perturbation determinant

log |L(z, J)| ≤ 16|z|
|1 − z2| (Δ1/2 + Δ), L(0, J) = 1. (2.6)

The rest is standard nowadays. According to [9, Theorem 4], for each
ε ∈ (0, 1) there is a constant C(ε) > 0 so that the Blaschke-type condition
holds for the zero set (divisor) Z(L)

∑
ζ∈Z(L)

(1 − |ζ|) |ζ2 − 1|ε
|ζ|ε ≤ C(ε)(Δ1/2 + Δ),

(each zero is taken with its multiplicity). The latter inequality turns into
(0.4) when we go over to the Zhukovsky images and take into account the
distortion for the Zhukovsky function [9, Lemma 7]. The proof is complete.

For the discrete Schrödinger operators J (aj = cj ≡ 1) (0.5) follows
from

Δ =
∞∑

j=−∞
|bj | = ‖J − J0‖1.

�

Remark 2.1. As a byproduct, the first bound in (2.5) for the perturbation de-
terminant provides some information on the location of the discrete spectrum
(spectral enclosure). Indeed, let κ be a unique positive root of the equation

(4κ + 5κ2)e4κ = 1, κ ≈ 0.129.

Then L �= 0 in D as long as

|ω(z)|(Δ1/2 + Δ) < κ,
|z|

|1 − z2| <
κ

2(Δ1/2 + Δ)
,

or in terms of the Zhukovsky images

σd(J) ⊂
{

λ ∈ C\[−2, 2] : |λ2 − 4| ≤
(

2(Δ1/2 + Δ)
κ

)2
}

. (2.7)
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So, the discrete spectrum lies in a certain Cassini oval.
The spectral enclosure is normally derived from the Birman–Schwinger

principle. Precisely,

λ(z) ∈ σd(J) ⇒ ‖K(z)‖ ≤ 1,

K is the Birman–Schwinger operator. In our case one has

σd(J) ⊂ {
λ ∈ C\[−2, 2] : |λ2 − 4| ≤ 324‖J − J0‖2

1

}
. (2.8)

It might be curious comparing the ovals in (2.7) and (2.8).
For the discrete Schrödinger operators the sharp oval which contains

the discrete spectrum is known [10]

σd(J) ⊂ {
λ ∈ C\[−2, 2] : |λ2 − 4| ≤ ‖J − J0‖2

1

}
. (2.9)

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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