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Abstract. In 1996 A. Aleksandrov solved the isometric embedding problem
for the model spaces K� with an arbitrary inner function �. We find all extreme
points of this convex set of measures in the case when � is a finite Blaschke
product, and obtain some partial results for generic inner functions.

Introduction

In [4] A. Aleksandrov settled the isometric embedding problem for the model
spaces K� := H2 � �H2. Precisely, let � be an arbitrary, nonconstant inner
function on the unit disk D, i.e., � belongs to the unit ball of H∞ (the Schur
class S), and |�| = 1 a.e. on the unit circle T. Denote by M+(T) the class of
all finite, positive Borel measures on T. The problem is to describe a subclass
M(�) ⊂ M+(T) of measures σ so that the identity operator (embedding) of the
model space K� to the space L2

σ(T) is isometric. In other words, the equality

〈f, g〉σ :=
∫
T

f (t)g(t)σ(dt) =
∫
T

f (t)g(t)m(dt) = 〈f, g〉m, f, g ∈ K� ∩ C(T)

holds for each continuous function f, g ∈ K�. Here m is the normalized Lebesgue
measure on T. As it turns out [3], for such measures and for each f ∈ K� the
boundary values exist a.e. with respect to the measure σ, so the equality can be
extended to the whole model space K�.

The result of Aleksandrov looks as follows.

Theorem A. σ ∈ M(�) if and only if there is a unique pair (β,ω) with a real

number β and a Schur function ω ∈ S so that

(0.1)
1 +�(z)ω(z)
1 −�(z)ω(z)

= iβ +
∫
T

t + z
t − z

σ(dt).
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For an alternative proof see [12, Section 11.7].
Relation (0.1) can be viewed as a counterpart of the Nevanlinna parametrization

for an indeterminate Hamburger moment problem; see [2, Theorem 3.2.2] and
Section 3 below.

Remark 0.1. The function ω in (0.1) is an independent parameter, which runs
over the class S. Both β and σ in (0.1) are uniquely determined by ω,

β =
2Im(ω(0)�(0))
|1 −�(0)ω(0)|2 .

Conversely, if two triplets {ωj, βj, σ}, j = 1, 2, satisfy (0.1), then ω1 = ω2 and
β1 = β2. Indeed, we have

1 +�ω2

1 −�ω2
− 1 +�ω1

1 −�ω1
= i(β2 − β1),

2�(ω2 − ω1) = i(β2 − β1)(1 −�ω2)(1 −�ω1).

The function on the right-hand side is outer, whereas the function on the left-hand
side has a nontrivial inner factor. So, ω1 = ω2 and β1 = β2, as claimed. For
instance, σ = m enters the only triplet {0, 0,m}.

Thereby, the equality (0.1) generates a bijection F

(0.2) F : S → M(�), F(ω) = σ;

F is a homeomorphism with respect to *-weak topology onM(�) and the topology
of uniform convergence on compact subsets of D on S. It is clear from (0.1) that ω
is an inner function if and only if σ = F(ω) is a singular measure in M(�).

The isometric embedding problem has a long history, and there are at least two
predecessors of Aleksandrov. L. de Branges [9, Theorem 32] solved the problem
for meromorphic inner functions on the upper half-plane. Later on D. Sarason [16]
proved the result on the isometric embedding for inner functions� with �(0) = 0
and for measures of the form |f |2m, f ∈ H2. Since such measures form a dense set
in M(�), the result of Aleksandrov can be deduced from that of Sarason (at least
for �(0) = 0). So it seems reasonable referring to the measures from M(�) as the
Aleksandrov–Sarason measures.

Relations (0.1) with unimodular constants ω = α ∈ T,

(0.3)
1 + α�(z)
1 − α�(z)

= iβα +
∫
T

t + z
t − z

σα(dt),

are well known in the theory of the model spaces [10, Chapter 9], [12, Chapter 11].
The measures σα in (0.3) are the Clark measures following D. Clark [11].
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Given n = 0, 1, . . ., a measure σ ∈ M(�) will be called a Clark measure of
order n if the corresponding parameter ω in (0.1) is a finite Blaschke product
(FBP) of order n.

The case �(z) = z in (0.1) arises in Geronimus’ approach to the theory of
orthogonal polynomials on the unit circle [17, Chapter 3]. The model space is
now the one-dimensional space of constant functions, and M(�) is the set of all
probability measures on T.

The set M(�) is easily seen to be a convex, compact in *-weak topology of the
space M+(T) set. The study of the set Mext(�) of extreme points for M(�) seems
quite natural. This is exactly the problem we address here. A point σ ∈ M(�) is
said to be an extreme point of M(�) if

(0.4) σ =
σ1 + σ2

2
, σj ∈ M(�) ⇒ σ1 = σ2 = σ.

To paraphrase, there is no nontrivial representation of σ as a convex linear combi-
nation of two Aleksandrov–Sarason measures.

The problem of the description of extreme points in the equivalent setting of
the de Branges measures was put forward for the first time by A. Baranov [5,
Section 7], and several important results were obtained therein.

We say that a measure σ ∈ M+(T) has finite support if

σ =
p∑

j=1

sjδ(tj), sj > 0, suppσ = {tj}p
j=1, tj = tj(σ),

and write | suppσ| = p for the cardinality of the support. Denote by Mf (�) the set
of all measures in M(�) with finite support. It is clear from (0.1) that Mf (�) is
nonempty if and only if both � and ω are FBP’s.

The model space K� is finite dimensional, dimK� < ∞, if and only if � = B
is a FBP. Our main result concerns this situation.

Theorem 0.2. Let B be a FBP of order n ≥ 1. A measure σ ∈ Mext(B) if and
only if σ ∈ Mf (B) and

(0.5) n ≤ | suppσ| ≤ 2n − 1.

When studying subclasses of M(�) it is sometimes reasonable to go to the
F-preimages and consider the corresponding subclasses of the Schur class instead.
That is what we are going to do when dealing with the class Mext(�).

Denote by Sext(�) ⊂ S the set of extreme Schur functions

(0.6) Sext(�) = {ω ∈ S : F(ω) ∈ Mext(�)}.
The above result has an equivalent form.
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Theorem 0.3. Let B be a FBP of order n ≥ 1. The set Sext(B) agrees with the

set of all FBP’s of the order at most n − 1.

The case of generic inner functions � is much more delicate. Given two inner
functions u, v , we say, following Sarason [6], that v lurks within Ku, if there is
a nontrivial function g ∈ H2 so that vg ∈ Ku. In other words, v is an inner divisor
of some function from Ku.

Theorem 0.4. Let� be a nonconstant inner function so that� does not lurk
within KzI for an inner function I. Then I ∈ Sext(�).

Corollary 0.5. Let � be a nonconstant inner function, which is not a FBP.
Then each FBP belongs to Sext(�). Equivalently, each Clark measure of order

n = 0, 1, . . . belongs to Mext(�).

We say that an inner function ϕ is a divisor of � if �/ϕ is again an inner
function.

Theorem 0.6. Let � be an arbitrary, nonconstant inner function. Then each
divisor of �, distinct from �, belongs to Sext(�), but � /∈ Sext(�).

The case of unimodular constant divisors corresponds to the Clark measures.

Corollary 0.7. Let � be an arbitrary, nonconstant inner function. Then the

Clark measures σα ∈ Mext(�) for all α ∈ T.

We examine the class Mf (B) of measures with finite support in Section 1, and
prove Theorem 0.2 in Section 2. In Section 3, given an inner function �, we
introduce, following [5, Section 7.1], a binary operation S × S → S (�-product).
As it turns out, a Schur function ω /∈ Sext(�) if and only if ω admits a nontrivial
factorization with respect to the �-product. Thereby, the “�-prime” functions ω
constitute the class Sext(�). The results of Theorems 0.4 and 0.6 are obtained
along this line of reasoning, by using some uniqueness conditions for the classical
Nehari problem.

So far we have met only inner functions ω in Sext(�). By Theorem 0.3, for
FBP’s B all functions in Sext(B) are inner. We show (see Proposition 3.9) that in
the opposite case, that is, dimK� = ∞, there are non-inner functions ω ∈ Sext(�).
In other words, the set Mext(�) contains measures with a nontrivial absolutely
continuous part.

1 Some properties of the class Mf (B)

Given a FBP B of order n, we denote by

{(z1, r1), (z2, r2), . . . , (zd, rd)}, zi �= zj, i �= j, rj ∈ N,
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the set of its zeros, so that

B(z) :=
d∏

k=1

( |zk|
zk

zk − z
1 − z̄kz

)rk

, degB = r1 + · · · + rd = n.

The model space

(1.1) KB := H2 � BH2 =
{

h(z) =
P(z)∏d

j=1(1 − z̄jz)rj
, degP ≤ n − 1

}

is the finite-dimensional space of all rational functions with the poles at the points
1/z̄j of degree at most rj, dimKB = n. The case zd = 0, i.e., B(0) = 0, will be of
particular concern. Now

KB =
{

h(z) =
P(z)∏d−1

j=1 (1 − z̄jz)rj
, degP ≤ n − 1

}
,

and the monomials 1, z, . . . , zrd−1 ∈ KB. Put

ϕ0(z) = 1, ϕk(z) :=
1

1 − z̄kz
, k = 1, 2, . . . , d − 1, ϕd(z) = z,

so the standard basis in KB is

(1.2) {ϕ1, ϕ
2
1, . . . , ϕ

r1
1 ; . . . ;ϕd−1, ϕ

2
d−1, . . . , ϕ

rd−1
d−1;ϕd, . . . , ϕ

rd−1
d ;ϕ0}.

It seems reasonable rearranging these functions in a unique sequence{el}n
l=1, en = 1.

The following result is a consequence of Theorem A, but we give a simple,
direct proof.

Proposition 1.1. The support of each measure σ ∈ M(B) contains at least n
points.

Proof. If | suppσ| ≤ n − 1, then dimL2
σ(T) ≤ n − 1, and the functions {el}n

l=1

in (1.2) are linearly dependent in L2
σ(T), so

det ‖〈ej, ek〉σ‖n
j,k=1 = 0.

On the other hand, the same system is linearly independent in L2
m(T), so

det‖〈ej, ek〉m‖n
j,k=1 �= 0. The contradiction completes the proof. �

As we mentioned in the Introduction, a measure σ ∈ Mf (B) if and only if
ω = F(−1)(σ) is a FBP. Moreover, | suppσ| = n + degω, so | suppσ| = n if and only
if σ = σα is the Clark measure (0.3).
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It is not hard to display σ ∈ Mf (B) explicitly in terms of the corresponding
parameters ω and B. Indeed, (0.1) now takes the form

(1.3)
1 + B(z)ω(z)
1 − B(z)ω(z)

= iβ +
p∑

k=1

tk + z
tk − z

sk,

and

(1.4) suppσ = {tj}p
j=1 : B(tj)ω(tj) = 1, j = 1, 2, . . . , p.

The weights sj can be determined from the limit relations

2tqsq = (1 + B(tq)ω(tq)) lim
z→tq

tq − z
1 − B(z)ω(z)

=
2

[Bω]′(tq)
,

or, in view of (1.4),

1
sq

= tq[Bω]′(tq) = tq
B′(tq)
B(tq)

+ tq
ω′(tq)
ω(tq)

.

A computation of the logarithmic derivative of a FBP is standard,

B′(z)
B(z)

=
d∑

k=1

rk
1 − |zk|2

(1 − z̄kz)(z − zk)
.

So,

(1.5)
1
sq

=
d∑

k=1

rk
1 − |zk|2
|tq − zk|2 +

m∑
j=1

1 − |wj|2
|tq −wj|2 ,

where w1, . . . , wm are all zeros (counting multiplicity) of ω in (1.3).
The relation (1.5) provides an answer to the following “extremalmass problem”:

given a point τ ∈ T, find a measure σmax ∈ Mf (B) so that

σmax{τ} = max{σ{τ} : σ ∈ Mf (B)}.
Indeed, such a measure is exactly the Clark measure σ = σα with α = B−1(τ),
| suppσmax| = n, and

1
σmax{τ} =

d∑
k=1

rk
1 − |zk|2
|τ− zk|2 .

Remark 1.2. As a matter of fact, the above Clark measure solves the same
extremal problem within the whole class M(B). Relation (1.5) holds in the form

1
sq

=
d∑

k=1

rk
1 − |zk|2
|τ− zk|2 + |ω′(τ)|,

where ω′ is the angular derivative of ω (cf. [10, Section 9.2]).
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Here is another simple property of measures σ ∈ Mf (B).

Proposition 1.3. Let {tj}p
j=1 be an arbitrary set of distinct points on T. There

is a measure σ ∈ Mf (B) such that
(1) {tj} ∈ suppσ;
(2) | suppσ| ≤ n + p − 1.

Proof. The proof is based on the interpolation with FBP’s (see, e.g., [15,
Theorem 1]): there is a FBP ω so that degω ≤ p − 1 and

ω(tj) = B−1(tj), j = 1, . . . , p.

The corresponding measure σ in (1.3) is the one we need. �
It turns out that the intersection of supports of two different measures from

Mf (B) can not be too large. Put

Mn+k(B) := {σ ∈ Mf (B) : | suppσ| = n + k}, k = 0, 1, . . . .

Lemma 1.4. Let σj ∈ Mn+pj(B), j = 1, 2, and let

| suppσ1 ∩ suppσ2| ≥ p1 + p2 + 1.

Then σ1 = σ2.

Proof. Let ωj be the FBP’s for σj in (1.3), degωj = pj, j = 1, 2. Let
ζ1, . . . , ζp1+p2+1 ∈ suppσ1 ∩ suppσ2, so, by (1.4),

ω1(ζl) = ω2(ζl), l = 1, 2, . . . , p1 + p2 + 1.

Note that
ωj(z) = γj

Qj(z)
Q∗

j (z)
, j = 1, 2,

where γj are unimodular constants, Qj are algebraic polynomials, Q∗
j are the

reversed polynomials, and

degQj = pj, degQ∗
j ≤ pj, j = 1, 2.

We see that for the polynomial

Q(z) = γ1Q1(z)Q
∗
2(z) − γ2Q2(z)Q

∗
1(z), degQ ≤ p1 + p2,

the relations
Q(ζl) = 0, l = 1, 2, . . . , p1 + p2 + 1

hold, so Q = 0, ω1 = ω2, and σ1 = σ2 (see Remark 0.1). �

Corollary 1.5. If σj ∈ Mn(B), j = 1, 2, and suppσ1 ∩ suppσ2 �= ∅, then
σ1 = σ2. If σj ∈ Mn+k(B), k = 0, 1, . . . , n − 1, and suppσ1 = suppσ2, then σ1 = σ2.
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2 Extreme points of M(�) for finite dimensional model
spaces

We begin with the result which provides an upper bound in (0.5). It can be viewed
as a counterpart of [2, Theorem 2.3.4] for the classical moment problem.

Proposition 2.1. Let σ ∈ Mext(B). Then σ ∈ Mf (B) and | suppσ| ≤ 2n − 1.

Proof. Assume first that zd = 0. Define a system of real valued, linearly
independent functions on T, accompanying (1.2)

xk,j(t) := Re ϕj
k(t), yk,j(t) := Im ϕ

j
k(t), j = 1, . . . , rk, k = 1, . . . , d − 1,

xd,j(t) := Re tj, yd,j(t) := Im tj, j = 1, . . . , rd − 1, xd,0 = 1.

We arrange them in a sequence {vl}2n−1
l=1 , and denote by E their complex, linear

span
E := span1≤l≤2n−1{vl}, dimE = 2n − 1.

Clearly, tl ∈ E for |l| ≤ rd − 1, and

ϕ
j
k = xk,j + iyk,j ∈ E, ϕ

j
k = xk,j − iyk,j ∈ E

(or em, em ∈ E) for the appropriate values of k, j,m. It is a matter of a direct
computation to make sure that the product emel ∈ E, m, l = 1, . . . , n. For instance,

ϕp(t)ϕq(t) =
1

(1 − z̄pt)(1 − zqt̄)
=
ϕp(t) + ϕq(t) − 1

1 − z̄pzq
,

ϕ2
p(t)ϕq(t) =

1
(1 − z̄pt)2(1 − zqt̄)

=
ϕ2

p(t) + ϕp(t)ϕq(t) − ϕp(t)

1 − z̄pzq
,

etc. The rest is a simple induction. We conclude, thereby, that f g ∈ E for each
f, g ∈ KB.

Assume next that | suppσ| ≥ 2n. Then the inclusion E ⊂ L1
σ(T) is proper,

so there is a nontrivial, linear functional �0 on L1
σ(T), ‖�0‖ ≤ 1, vanishing

on E. Equivalently, there is a function ϕ0 ∈ L∞
σ (T) such that |ϕ0| ≤ 1 [σ]-almost

everywhere, and ∫
T

xk,j(t)ϕ0(t)σ(dt) =
∫
T

yk,j(t)ϕ0(t)σ(dt) = 0

for all appropriate values of j, k. Since the functions xj,k, yj,k are real valued, the
function ϕ0 can be taken real valued as well.

Consider now two measures σ±(dt) := (1 ± ϕ0)σ(dt), σ± ∈ M+(T). By the
construction, σ± ∈ M(B), and the representation 2σ = σ+ +σ− is nontrivial. Hence,
σ is not an extreme point of M(B), as claimed.
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It remains to examine the general case when B(0) �= 0. The standard trick with
the change of variables (see, e.g., [17, pp. 140–141]) reduces this case to the one
discussed above. Given a ∈ D, put

ba(z) :=
z + a
1 + āz

, Ba(z) := B(ba(z)), ωa(z) := ω(ba(z)).

If we replace z with ba(z) in (0.1), we have

1 + Ba(z)ωa(z)
1 − Ba(z)ωa(z)

= iβ +
∫
T

t + ba(z)
t − ba(z)

σ(dt),

and since
t + ba(z)
t − ba(z)

= iβa,t +
1 − |a|2
|t − a|2

ba(t) + z
ba(t) − z

,

we come to

1 + Ba(z)ωa(z)
1 − Ba(z)ωa(z)

= iβa +
∫
T

1 − |a|2
|t − a|2

ba(t) + z
ba(t) − z

σ(dt) = iβa +
∫
T

τ + z
τ− z

σ(a)(dτ).

It is clear that the map σ → σ(a) is a bijection of M(B) onto M(Ba), which is also
the bijection between Mext(B) and Mext(Ba). Obviously, it is a bijection between
Mf (B) and Mf (Ba), and in this case | suppσ| = | suppσ(a)|. But Ba(0) = 0 with
a = zd, so the above argument applies. The proof is complete. �

Proof of Theorem 0.2. It remains to show that each measure σ ∈ Mn+k(B),
k = 0, 1, . . . , n − 1 is the extreme point of M(B). Indeed, let 2σ = σ1 + σ2, then

σj ∈ Mn+pj, j = 1, 2, 0 ≤ p1, p2 ≤ k.

Since suppσ = suppσ1 ∪ suppσ2, we have

| suppσ| = | suppσ1| + | suppσ2| − | suppσ1 ∩ suppσ2|,
or

| suppσ1 ∩ suppσ2| = n + p1 + n + p2 − n − k = n + p1 + p2 − k ≥ p1 + p2 + 1.

By Lemma 1.4, σ1 = σ2, so σ is the extreme point of M(B), as claimed. �

3 Extreme points of M(�) for generic inner functions

The case of generic inner functions is much more delicate.
Let us define a binary operation in the Schur class, which corresponds to

taking a half-sum of measures under transformation F. Precisely, given two Schur
functions s1, s2, we denote by s := (s1 ◦ s2)� the operation so that

(3.1) F((s1 ◦ s2)�) =
F(s1) + F(s2)

2
.
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It is a matter of elementary computation based on the relation

1 +�(z)s(z)
1 −�(z)s(z)

=
1
2

( 1 +�(z)s1(z)
1 −�(z)s1(z)

+
1 +�(z)s2(z)
1 −�(z)s2(z)

)
, s = (s1 ◦ s2)�,

to check that

(3.2) (s1 ◦ s2)� :=
s0 −�s1s2

1 −�s0
, s0 :=

s1 + s2

2
;

(s1 ◦ s2)� will be called a �-product of s1 and s2.
The operation (3.2) was introduced in [5, formula (26)] for the model spaces K�

in the upper half-plane with� = E∗/E, where E is an entire function of de Branges.
In fact, the argument in [5, Section 7.1] works for arbitrary model spaces.

We list the main properties of the �-product in the statement below.

Proposition 3.1. Let � be a nonconstant, inner function.

(i) ◦ is a binary operation on the Schur class, which is idempotent, that is,

(s ◦ s)� = s.
(ii) s = (s1 ◦ s2)� is an inner function if and only if so are both s1 and s2.

(iii) The following equality holds:

(3.3) s = s0 +�h, s0 =
s1 + s2

2
, h ∈ H∞.

Proof. (i) Since 1 −�s0 is an outer function [13, Corollary II.4.8], (s1 ◦ s2)�
belongs to the Smirnov class, so one has to verify that

|(s1 ◦ s2)�(t)| ≤ 1

for a.e. t ∈ T. Indeed,

|1 −�s0|2 = 1 + |s0|2 − Re(�s1 +�s2),

|s0 −�s1s2|2 = |s0|2 + |s1s2|2 − |s1|2Re(�s2) − |s2|2Re(�s1),

so

|1 −�s0|2 − |s0 −�s1s2|2
= 1 − |s1s2|2 − Re(�s1)(1 − |s2|2) − Re(�s2)(1 − |s1|2)
= 1 − |s1s2|2 − |s1|(1 − |s2|2) − |s2|(1 − |s1|2)

+ (|s1| − Re(�s1))(1 − |s2|2) + (|s2| − Re(�s2))(1 − |s1|2)
= (1 − |s1s2|)(1 − |s1|)(1 − |s2|) + (|s1| − Re(�s1))(1 − |s2|2)

+ (|s2| − Re(�s2))(1 − |s1|2) ≥ 0,

as needed.
By definition (3.2), (s ◦ s)� = s for each s ∈ S, so the operation is idempotent.
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(ii) If both s1 and s2 are inner functions, then, by the above calculation, so is
(s1 ◦ s2)�. Conversely, assume that (s1 ◦ s2)� is an inner function, but |s1| < 1
a.e. on a set E ⊂ T of positive measure. It follows from the above calculation that

|s2| = 1, |s2| − Re(�s2) = 0

a.e. on E. Hence�s2 = 1 a.e. on the set of positive measure, so� is a unimodular
constant.

(iii) It follows directly from the definition that

s0 = s +�
s1s2 − s2

0

1 −�s0
= s +�h,

h =
s1s2 − s2

0

1 −�s0
= −1

4
(s1 − s2)2

1 −�s0
.

Since 1 −�s0 is an outer function, h belongs to the Smirnov class, and moreover,

|h(t)| = |s0(t) − s(t)| ≤ 2

a.e. on T, so h ∈ H∞, as claimed. �

Remark 3.2. The �-product is a nontrivial operation already for� = 1. It is
clear from the definition that for s2 = � = 1 one has (s1 ◦ s2)� = 1 for any s1 ∈ S.

As a matter of fact, one can define a whole one-parameter family of binary
operations in the Schur class, which corresponds to an arbitrary convex linear
combination of the two measures, not just their half-sum; see [5, formula (25)],

(3.4) (s1 ◦ s2)
t
� :=

ts1 + (1 − t)s2 −�s1s2

1 −�(ts2 + (1 − t)s1)
, 0 ≤ t ≤ 1.

So, (3.2) is a particular case of (3.4) with t = 1/2. We have

F((s1 ◦ s2)
t
�) = tF(s1) + (1 − t)F(s2).

Definition 3.3. A function s ∈ S is called �-prime if

s = (s1 ◦ s2)� ⇒ s = s1 = s2.

It is clear from (3.1) that σ = F(s) ∈ Mext(�) if and only if s is �-prime.
Equivalently, s ∈ Sext(�) if and only if s is �-prime. Moreover, if at least for
one t ∈ (0, 1) a function s admits a nontrivial factorization s = (s1 ◦ s2)t�, then
s /∈ Sext(�).

The Lebesgue measure m is the only one which knowingly belongs to M(�)
for any inner function�. We show that it is never in Mext(�). The following result
is borrowed from [5, Corollary 7.2].
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Proposition 3.4. If s ∈ Sext(�), then ‖s‖∞ = 1.

Proof. Assume, on the contrary, that ‖s‖∞ = 1 − δ, δ > 0. Put t = δ/2,

s1 = 0, s2 =
s

1 − t(1 −�s)
.

We see that

|s2| ≤ |s|
1 − 2t

≤ 1 − δ

1 − δ
= 1,

so s2 ∈ S. By (3.4), s = (s1 ◦ s2)t�, and the factorization is nontrivial as long as
s �≡ 0. For s ≡ 0 a possible nontrivial factorization can be taken as

0 = (s1 ◦ s2)�, s1 =
1
3
, s2 =

1
2�− 3

.

Hence, s �∈ Sext(�). The contradiction completes the proof. �

Example 3.5. It is easy to see that the Clark measures σα = F(α) are the
extreme measures for each α ∈ T and any inner function �. Indeed, assume that

α =
ω0 −�ω1ω2

1 −�ω0
, ω0 =

α +�ω1ω2

1 + α�
,

and so
(α− ω0)(1 + α�) = �(α2 − ω1ω2).

But both functions α − ω0 = α(1 − ᾱω0) and 1 + α� are outer, and so is their
product, whereas the left-hand side has a nontrivial inner factor. Hence

α2 = ω1ω2, ω0 = α,

which implies ω1 = ω2 = ω = α is �-prime, as claimed.

To determine whether a function ω ∈ S is �-prime, we apply uniqueness
conditions in the celebrated Nehari problem, with the notion of a minifunction
playing a key role.

Given a function g ∈ B, the unit ball of L∞(T), the Nehari problem concerns a
set

N(g) := {g + H∞} ∩ B,

which is nonempty, since g ∈ N(g). Following Adamjan–Arov–Krein [1], we
call g an undeformable minifunction if N(g) = {g}. Clearly, ‖g‖∞ = 1 for
each such g.

Lemma 3.6. Given a nonconstant inner function � and s ∈ S, let s�̄ be the
undeformable minifunction. Then s is �-prime.
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Proof. Let s = (s1 ◦ s2)�, by Proposition 3.1, (iii),

s�̄ = s0�̄ + h, h ∈ H∞.

But s�̄ is an undeformable minifunction, so s = s0 a.e. Next,

(3.5) s0 =
s0 −�s1s2

1 −�s0
, s2

0 =
(s1 + s2

2

)2
= s1s2,

and so s1 = s2 a.e., and s is �-prime, as needed. �
Proof of Theorem 0.4. In view of Lemma 3.6, it suffices to show that I�̄

is the undeformable minifunction. According to the result in [1, Remark 3.2], a
unimodular function f , i.e., |f | = 1 a.e. on T, is not an undeformable minifunction
if and only if it admits the following representation

(3.6) f (t) =
ξ+(t)
tξ−(t)

, ξ± ∈ H2
±,

a.e. on T.
Assume that I�̄ does not belong to the set of undeformable minifunctions.

Then, by (3.6) with f = I�̄, one has tIξ− = �ξ+, so �ξ+ ∈ KtI , and � is lurking
within KtI. The contradiction completes the proof. �

The result in Corollary 0.5 is immediate from the above theorem, as for a FBP b

and an inner function �, which is not a FBP, � does not lurk within Kzb. Indeed,
the model space Kzb consists of rational functions, see (1.1), and �g, g ∈ H2, is
not such.

A special case of Corollary 0.5 (for an atomic singular function�) was proved
in [5, Theorem 7.1].

It might be worth changing the perspective by looking for � such that a given
s ∈ Sext(�). For instance, it is clear from Theorem 0.3 and Corollary 0.5 that given
a FBP s = b, all such � are the inner functions of the order exceeding the order
of b (ord� = +∞ off the class of FBP’s), cf. [6, Theorem 2.1].

Remark 3.7. For particular inner functions � the result can be obtained by
simpler means. For instance, let � have infinitely many zeros {zj}j≥1. Let a FBP
b = (b1 ◦ b2)�. Then, by (3.3), we have b = b0 +�h and so

b(zj) = b0(zj), j = 1, 2, . . . .

The uniqueness condition in the Nevanlinna–Pick interpolation problem (b is the
FBP), see [13, Theorem I.2.2 and Corollary I.2.3], implies

b = b0 =
b1 + b2

2
,

which leads to b1 = b2 = b, as needed.
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The same argument applies in the case when the underlying singular measure
for � contains an atom, with the boundary Nevanlinna–Pick problem instead; see
[8, Theorem 1.3]. So, the extremal property of the Schur functions s ∈ Sext(�) is
tightly related to uniqueness in some classical interpolation problems.

There is a striking similarity between the Aleksandrov formula (0.1) and the
Nevanlinna parametrization for an indeterminate Hamburger moment problem;
see [2, Theorem 3.2.2]. Recall that the Hamburger moment problem deals with
measures μ on the real line having prescribed moments of all orders. It is called
indeterminate if the set of such measures is infinite. It turns out that all measuresμ
arise from the Nevanlinna formula

(3.7) −A(z)u(z) − C(z)
B(z)u(z) − D(z)

=
∫
R

μ(dx)
x − z

, z ∈ C+,

when the independent parameter u runs over the class of analytic on the upper half-
plane C+ functions with the nonnegative imaginary part (u = ∞ is included). A
measureμ is called a canonical solution of order n = 0, 1, . . . if the parameter u

in (3.7) is a real rational function of order n.

The set of all solutions is clearly convex, so the extreme points show up. The
result of Glazman–Naiman [14], see [2, Corollary 3.4.3], states that each canonical
solution of order n is the extrememeasure for the indeterminateHamburgermoment
problem. Corollary 0.5 is a direct counterpart of the latter result for the isometric
embedding problem. Furthermore, if � is not a FBP, the set Mext(�) is dense
in M(�), since, by the Carathéodory theorem, the FBP’s are dense in S, and F is
the homeomorphism. This is a counterpart of [7, Theorem 1].

Proof of Theorem0.6. To show that eachdivisorϕ of�, ϕ �= �, is�-prime,
we again apply Lemma 3.6 with g = ϕ�̄ = ψ̄, ψ is a nonconstant inner function.
Indeed, assume, on the contrary, that ψ̄ is not an undeformable minifunction. Then
there is a nonzero function f ∈ H∞ such that

‖ψ̄− f‖∞ = ‖1 − ψf‖∞ ≤ 1.

Hence, Reψf ≥ 0 on the disk D, and, by [13, Corollary II.4.8], the function ψf is
outer. But it has a nontrivial inner factorψ, so the contradiction justifies the claim.

For any nonzero f ∈ S the function�f 2 = (f ◦(−f ))� /∈ Sext(�), so in particular,
� /∈ Sext(�). The proof is complete. �

Remark 3.8. I thank the referee who pointed out a simple proof of this result
which has nothing to do with AAK minifunctions. Indeed, let � = ϕψ as above,
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and assume, on the contrary, that there is a nontrivial factorization ϕ = (ϕ1 ◦ ϕ2)�.
Then

ϕ(1 −�ϕ0) = ϕ0 −�ϕ1ϕ2, ϕ0 =
ϕ1 + ϕ2

2
,

so ϕ0 is divisible by ϕ in H∞: ϕ0 = ϕh, h ∈ S. If h ≡ 1, then ϕ is �-prime, see
(3.5). Otherwise,

ϕ− ϕ0 = �(ϕϕ0 − ϕ1ϕ2), 1 − h = ψ(ϕϕ0 − ϕ1ϕ2),

and the nontrivial outer function on the left-hand side has a nontrivial inner factorψ.
The contradiction completes the proof.

Finally, we show that there are non-inner Schur functions w ∈ Sext(�), as long
as � is not a FBP.

Proposition 3.9. Assume that � is not a FBP. Then there are outer Schur

functions w ∈ Sext(�).

Proof. There is a point ζ ∈ T so that� does not admit an analytic continuation
across any open arc � centered at ζ. Fix such an arc, and take an outer Schur
function w such that w−1 ∈ H∞ and |w| = 1 a.e. on �. Following the line of
reasoning from [13, Example IV.4.2], we show first that w�̄ is an undeformable
minifunction. Indeed, assume that there is a nonzero function g ∈ H∞ so that

‖w�̄− g‖∞ = ‖w−�g‖∞ ≤ 1,

and hence

|w−�g| = |w||1 −�g/w| = |1 −�g/w| ≤ 1

a.e. on �. So Re�g/w ≥ 0 a.e. on �, and, by [13, Exercise II.14 (a)], the inner
factor of the function �g/w ∈ H∞ admits an analytic continuation across �, that
contradicts our assumption.

By Lemma 3.6, w is �-prime, as claimed. �

Note that the above functionw can be taken infinitely smooth in the closed unit
disk.

Acknowledgments. I thank the referee for drawing my attention to the
lurking property for inner functions and the references [5], [6], and A. Kheifets for
the valuable remarks about minifunctions and the result of Adamjan–Arov–Krein.
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