BOOKS of Khruslov Eu.Ya.
1. Marchenko, Vladimir A.; Khruslov, Evgueni Ya. Homogenization of partial differential equations. Progress in Mathematical Physics, 46. Birkhäuser Boston, Inc., Boston, MA, 2006, 398 pp.
2. Marčenko, V. A.; Khruslov, E. Ya. Boundary value problems in domains with a fine-grained boundary, ``Naukova Dumka'', Kiev, 1974. 279 pp.
MAIN ARTICLES:
1. Khruslov, Evgenii Ya. Homogenization of Maxwell's equations in domains with dense perfectly conducting grids. Ukr. Mat. Visn. 2 (2005), no. 1, 109--142; translation in Ukr. Math. Bull. 2 (2005), no. 1, 113--145
2. Berlyand, L.; Khruslov, E. Homogenized non-Newtonian viscoelastic rheology of a suspension of interacting particles in a viscous Newtonian fluid. SIAM J. Appl. Math. 64 (2004), no. 3, 1002--1034
3. Khruslov, Eugene; Kotlyarov, Vladimir Generation of asymptotic solitons in an integrable model of stimulated Raman scattering by periodic boundary data. Mat. Fiz. Anal. Geom. 10 (2003), no. 3, 366—384
4. Berlyand, Leonid; Khruslov, Evgen Competition between the surface and the boundary layer energies in a Ginzburg-Landau model of a liquid crystal composite. Asymptot. Anal. 29 (2002), no. 3-4, 185—219
5. Boutet de Monvel, Anne; Khruslov, Eugene; Kotlyarov, Vladimir Soliton asymptotics of rear part of non-localized solutions of the Kadomtsev-Petviashvili equation. J. Nonlinear Math. Phys. 9 (2002), no. 1, 58—76
6. Berlyand, Leonid; Khruslov, Evgenii Homogenization of harmonic maps with large number of vortices and applications in superconductivity and superfluidity. Adv. Differential Equations 6 (2001), no. 2, 229—256
7. Khruslov, Eugene Ya.; Pankratov, Leonid S. Homogenization of the Dirichlet variational problems in Orlicz-Sobolev spaces. Operator theory and its applications (Winnipeg, MB, 1998), 345--366, Fields Inst. Commun., 25, Amer. Math. Soc., Providence, RI, 2000.
8. Khruslov, E. Ya.; Pal-Val, A. P. Averaging of Maxwell equations on manifolds of complicated microstructure. (Russian) Mat. Fiz. Anal. Geom. 7 (2000), no. 1, 91--114.
9. Khruslov, E. Ya.; Pal-Val, A. P. Homogenization of harmonic 1-forms on Riemannian surfaces of increasing genus. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 1999, no. 2, 39--43.
10. Berlyand, L.; Khruslov, E. Homogenization of harmonic maps and superconducting composites. SIAM J. Appl. Math. 59 (1999), no. 5, 1892--1916
11. Boutet de Monvel, L.; Khruslov, E. Homogenization of harmonic vector fields on Riemannian manifolds with complicated microstructure. Math. Phys. Anal. Geom. 1 (1998), no. 1, 1--22.
12. Boutet de Monvel, Anne; Khruslov, Eugene Ya.; Kotlyarov, Vladimir P. The Cauchy problem for the sinh-Gordon equation and regular solitons. Inverse Problems 14 (1998), no. 6, 1403--1427.
13. Khruslov, Evgenii Ya.; Stephan, Holger Splitting of some non-localized solutions of the Korteweg-de Vries equation into solitons. Mat. Fiz. Anal. Geom. 5 (1998), no. 1-2, 49—67
14. Boutet de Monvel, L.; Chueshov, I. D.; Khruslov, E. Ya. Homogenization of attractors for semilinear parabolic equations on manifolds with complicated microstructure. Ann. Mat. Pura Appl. (4) 172 (1997), 297—322
15. Anders, I. A.; Khruslov, E. Ya.; Kotlyarov, V. P. Soliton asymptotics of non-localized solutions of non-linear evolutionary equations. Proceedings of the Second World Congress of Nonlinear Analysts, Part 7 (Athens, 1996). Nonlinear Anal. 30 (1997), no. 7, 3951--3961.
16. Khruslov, E. Ya.; Vorob’eva, G. I. Averaging of the Neumann problem for higher-order elliptic operators. (Russian) Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 1997, no. 4, 43--47.
17. Bute de Monvel, L.; Khruslov, E. Ya. Averaging of a diffusion equation on Riemannian manifolds of complex microstructure. (Russian) Tr. Mosk. Mat. Obs. 58 (1997), 158--186; translation in Trans. Moscow Math. Soc. 1997, 137--161
18. Boutet de Monvel, A.; Egorova, I.; Khruslov, E. Soliton asymptotics of the Cauchy problem solution for the Toda lattice. Inverse Problems 13 (1997), no. 2, 223—237
19. Ostapenko, D. Yu.; Palʹ-Valʹ, A. P.; Khruslov, E. Ya. Uniform asymptotic formulas for curvilinear solitons of the Kadomtsev-Petviashvili equations. (Russian) Teoret. Mat. Fiz. 108 (1996), no. 2, 205--211; translation in Theoret. and Math. Phys. 108 (1996), no. 2, 1013--1018 (1997)
20. Khruslov, E. Ya. Soliton asymptotics of non-decreasing solutions of nonlinear evolutionary equations. Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), 307--322, Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996.
21. Goncharenko, M.; Khruslov, E. Ya. Homogenization of electrostatic problems in domains with nets. Homogenization and applications to material sciences (Nice, 1995), 215--223, GAKUTO Internat. Ser. Math. Sci. Appl., 9, Gakkōtosho, Tokyo, 1995
22. Khruslov, Eugene Ya. Homogenized models of strongly inhomogeneous media. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 1270--1278, Birkhäuser, Basel, 1995
23. Bute de Monvel, L.; Khruslov, E. Ya. An averaged model of the diffusion of colored particles in domains with small obstacles. (Russian) Mat. Fiz. Anal. Geom. 1 (1994), no. 1, 78--101.
24. Anders, I. A.; Kotlyarov, V. P.; Khruslov, Ē. Ya. Curved asymptotic solitons of the Kadomtsev-Petviashvili equation. (Russian) Teoret. Mat. Fiz. 99 (1994), no. 1, 27--35; translation in Theoret. and Math. Phys. 99 (1994), no. 1, 402--408
25. Khruslov, Ē.; Pankratov, L. Homogenization of boundary problems for the Ginzburg-Landau equation in weakly connected domains. Spectral operator theory and related topics, 233--268, Adv. Soviet Math., 19, Amer. Math. Soc., Providence, RI, 1994.
26. Khruslov, Ē. Ya.; Kotlyarov, V. P. Soliton asymptotics of nondecreasing solutions of nonlinear completely integrable evolution equations. Spectral operator theory and related topics, 129--180, Adv. Soviet Math., 19, Amer. Math. Soc., Providence, RI, 1994
27. Khruslov, Ē. Ya.; Shepelsky, D. G. Inverse scattering method in electromagnetic sounding theory. Inverse Problems 10 (1994), no. 1, 1—37
28. Khruslov, Ē. Ya.; Levchenko, E. P. Inverse problems of magnetotelluric sounding in the case of horizontal propagation of generating waves. (Russian) Izv. Akad. Nauk SSSR Ser. Fiz. Zemli 1991, no. 12, 73--83.
29. Khruslov, Ē. Ya. Homogenized models of composite media. Composite media and homogenization theory (Trieste, 1990), 159--182, Progr. Nonlinear Differential Equations Appl., 5, Birkhäuser Boston, Boston, MA, 1991.
30. Pankratov, L. S.; Khruslov, Ē. Ya. Asymptotic behavior of solutions of variational problems in domains with a fine-grained boundary. (Russian) Dokl. Akad. Nauk Ukrain. SSR Ser. A 1990, no. 2, 20—22
31. Khruslov, Ē. Ya. An averaged model of a strongly inhomogeneous medium with memory. (Russian) Uspekhi Mat. Nauk 45 (1990), no. 1(271), 197--198; translation in Russian Math. Surveys 45 (1990), no. 1, 211--212
32. Khalilov, F. A.; Khruslov, Ē. Ya. Matrix generalisation of the modified Korteweg-de Vries equation. Inverse Problems 6 (1990), no. 2, 193—204
33. Khruslov, Ē. Ya. Averaged models of diffusion in fractured-porous media. (Russian) Dokl. Akad. Nauk SSSR 309 (1989), no. 2, 332--335; translation in Soviet Phys. Dokl. 34 (1989), no. 11, 980--981 (1990)
34. Kotlyarov, V. P.; Khruslov, Ē. Ya. Asymptotic solitons of the modified Korteweg-de Vries equation. Inverse Problems 5 (1989), no. 6, 1075—1088
35. Egorova, I. E.; Khruslov, Ē. Ya. Asymptotic behavior of solutions of the second boundary value problem in domains with random thin cracks. (Russian) Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. No. 52 (1989), 91--103; translation in J. Soviet Math. 52 (1990), no. 5, 3412--3421
36. Kotlyarov, V. P.; Khruslov, Ē. Ya. Asymptotic solitons. (Russian) Functional and numerical methods in mathematical physics (Russian), 103--107, 267, ``Naukova Dumka'', Kiev, 1988.
37. L’vov, V. A.; Khruslov, Ē. Ya. Solvability in the large of a problem that describes the motion of the suspension of rigid axisymmetric particles in a viscous fluid. (Russian) Vestnik Khar’kov. Gos. Univ. No. 315, Upravl. Sistemy (1988), 105--110.
38. Khalilov, F. A.; Khruslov, Ē. Ya. Matrix generalization of the modified Korteweg\mhy de Vries equation. (Russian) Mathematical physics, functional analysis (Russian), 3--17, 143, ``Naukova Dumka'', Kiev, 1986
39. Kotlyarov, V. P.; Khruslov, Ē. Ya. Time asymptotics of the solution of the Cauchy problem for the modified Korteweg de Vries equation with nondecreasing initial data. (Russian) Dokl. Akad. Nauk Ukrain. SSR Ser. A 1986, no. 10, 61—64
40. Kotlyarov, V. P.; Khruslov, Ē. Ya. Solitons of the nonlinear Schrödinger equation, which are generated by the continuous spectrum. (Russian) Teoret. Mat. Fiz. 68 (1986), no. 2, 172--186.
41. Khruslov, Ē. Ya. One-dimensional inverse problems of electrodynamics. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 25 (1985), no. 4, 548--561, 638
42. Khruslov, Ē. Ya. An inverse scattering problem for an equation of electric geophysical exploration. (Russian) General theory of boundary value problems, 213--219, ``Naukova Dumka'', Kiev, 1983.
43. Khruslov, Ē. Ya. Convergence of solutions of the second boundary value problem in weakly connected domains. (Russian) Theory of operators in function spaces and its applications, pp. 129--173, 191, ``Naukova Dumka'', Kiev, 1981.
44. Fenchenko, V. N.; Khruslov, Ē. Ya. Asymptotic behavior of solutions of differential equations with a strongly oscillating coefficient matrix that does not satisfy a uniform boundedness condition. (Russian) Dokl. Akad. Nauk Ukrain. SSR Ser. A 1981, no. 4, 24--27, 95
45. Fenčenko, V. N.; Hruslov, Ē. Ja. Asymptotic behavior of the solutions of differential equations with strongly oscillating and degenerating coefficient matrix. (Russian) Dokl. Akad. Nauk Ukrain. SSR Ser. A 1980, no. 4, 26--30, 99
46. Nazyrov, Z. F.; Hruslov, E. Ja. Perturbation of the thermal field of moving small particles. (Russian) Studies in the theory of operators and their applications (Russian), pp. 49--65, 177, ``Naukova Dumka'', Kiev, 1979.
47. Hruslov, E. Ja. Asymptotic behavior of the solutions of the second boundary value problem in the case of the refinement of the boundary of the domain. (Russian) Mat. Sb. 106(148) (1978), no. 4, 604--621.
48. L’vov, V. A.; Hruslov, E. Ja. Perturbation of a viscous incompressible fluid by small particles. (Russian) Theoretical and applied questions of differential equations and algebra (Russian), pp. 173--177, 267, ``Naukova Dumka'', Kiev, 1978.
49. Khruslov, E.Ya. The first boundary value problem in domains with a complicated boundary for higher order equations. Math. USSR, Sb. 32, 535-549 (1978).
50. Khruslov, E.Ya. Das erste Randwertproblem in Gebieten mit zusammengesetztem Rand für Gleichungen höherer Ordnungen. Mat. Sb., N. Ser. 103(145), 614-629 (1977).
51. Khruslov, E.Ya. Die Asymptotik der Lösung des Cauchyproblems für die Korteweg-de Vriessche Gleichung mit Anfangswerten vom Stufentyp. Mat. Sb., N. Ser. 99(141), 261-281 (1976).
52. L'vov, V.A.; Khruslov, E.Ya. Randwertproblem in Gebieten mit feinkorniger Berandung für ein allgemeines System von Navier-Stokesschen Gleichungen. Vestn. Khar'kov. Univ. 119, Mat. Mekh. No.40, 23-36
53. L'vov, V.A.; Khruslov, E.Ya. Randwertproblem in Gebieten mit feinkorniger Berandung für ein linearisiertes System von Navier-Stokesschen Gleichungen. Vestn. Khar'kov. Univ. 119, Mat. Mekh. No.40, 3-22 (1975).
54. Kotlyarov, V.P.; Khruslov, E.Ya. Über die Gleichungen eines elastischen Mediums mit einer grossen Zahl von kleinen absolut festen Einschlüssen. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1973, 500-503 (1973).
55. Khruslov, E.Ya. The method of orthogonal projections and the Dirichlet problem in domains with a fine-grained boundary. Math. USSR, Sb. 17(1972), 37-59 (1973).
56. Khruslov, E.Ya. Über ein Mass, das mit einer Folge von Lösungen erster Randwertprobleme zusammenhängt. Teor. Funkts., Funkts. Anal. Prilozh. 16, 29-38 (1972).
57. Khruslov, E.Ya. Über ein Mass, das mit einer Folge von Lösungen erster Randwertprobleme zusammenhängt. Teor. Funkts., Funkts. Anal. Prilozh. 16, 29-38 (1972).
58. Khruslov, E.Ya. Die Methode der Orthogonalprojektionen und das Dirichletsche Randwertproblem in Gebieten mit kleinkörnigem Rand. Mat. Sb., N. Ser. 88(130), 38-60 (1972).
59. Kotlyarov, V.P.; Khruslov, E.Ya. Zweites Randwertproblem der linearen Elastizitätstheorie in Gebieten mit feinkörniger Berandung. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1972, 415-418 (1972).
60. Khruslov, E.Ya. Dirichletsches Problem in einem Gebiet mit zufälliger Berandung. Vestn. Khar'kov. Univ. 53, Ser. Mekh.-Mat. No.34, 14-37 (1970).
61. Khruslov, E.Ya. Über Konvergenzbedingungen einer Folge von Lösungen des ersten Randwertproblems. Teor. Funkts., Funkts. Anal. Prilozh. 12, 103-110 (1970)
62. Khruslov, E.Ya. On the Neumann boundary broblem in a domain with composite boundary. Math. USSR, Sb. 12, 553-571 (1970).
63. Khruslov, E.Ya. Über Resonanzerscheinungen in einem Beugungsproblem. Teor. Funkts., Funkts. Anal. Prilozh. 6, 111-129 (1968).
64. Suzikov, G.V.; Khruslov, E.Ya. Über eine mittlere Randbedingung für das Diffusionsproblem in einem Gebiet mit stückweise halbdurchlässigem Rand. Teor. Funkts., Funkts. Anal. Prilozh. 4, 146-161 (1967).
65. Suzikov, G.V.; Khruslov, E.Ya. Über den Durchgang von Schallwellen durch dünne Kanäle in einer reflektierenden Schicht. Teor. Funkts., Funkts. Anal. Prilozh. 5, 140-156 (1967).
66. Khruslov, E.Ya. Erstes Randwertproblem in Gebieten mit zusammengesetzter Berandung. Vestn. Khar'kov. Univ. 14 (Ser. Mekh.-Mat.), 3-16 (1966).
67. Khruslov, E.Ya. Untersuchung eines Grenzfalles des ersten Randwertproblems. Teor. Funkts., Funkts. Anal. Prilozh. 1, 71-87 (1965).
68. Marchenko, V.A.; Khruslov, E.Ya. Randwertprobleme mit feinkörnigem Rand. Mat. Sb., N. Ser. 65(107), 458-472 (1964).