Dmitry Shepelsky |
|
|
|
|
Contact Information |
Education and degrees |
Habilitations
|
(1)
Contributions à l'étude des propriétés spectrales et de
scattering de la pro-
pagation des ondes électromagnétiques, Université Paris 7,
France, 2000.
(2) The Riemann-Hilbert method in
inverse problems and integrable equations,
ILTPE, Kharkiv, 2008 (Doctor of Sciences Thesis).
|
PhD Thesis
|
Inverse spectral problems for
differential operators with discontinuities,
Kharkiv State University, 1992
(scientific adviser E.Khruslov, ILTPE, Kharkiv).
|
Post-graduate
|
ILTPE, Kharkiv (1988-1991).
|
Graduate
|
Kharkiv State University
(1980-1985),
Diploma with honor in Mathematics, 1985.
|
Scopus ID: 35615520900
Web of Science ResearcherID: L-1559-2018
ORCID ID: 0000-0001-6616-5893
Research interests
|
• Inverse
spectral analysis for ordinary differential and difference
operators.
• Direct and inverse scattering theory.
• Nonlinear integrable PDE: inverse scattering transform,
Riemann-Hilbert problem formalism, initial boundary valure problems,
long-time asymptotics.
|
Employment
|
— since 2021: Head of Department of Geometry and Differential Equations,
ILTPE, Kharkiv
— 2016-2021: professor, V.Karazin Kharkiv National University, Kharkiv
— 2010-2021: leading researcher, ILTPE, Kharkiv
— 1995-2010: senior researcher, ILTPE, Kharkiv
— 1992-1994: researcher, ILTPE, Kharkiv
— 1985-1992: junior researcher, ILTPE, Kharkiv
|
Teaching
|
— Riemann-Hilbert problems and
applications to PDE, University Lille 1 (Fall 2018)
— Riemann-Hilbert problems and nonlinear equations, Kharkiv National
University (Spring 2017, Spring 2018, Fall 2018)
— Inverse spectral problems, Kharkiv National University (Fall 2016,
Fall 2017, Fall 2018)
— Partial differential equations, Kharkiv National University (Fall
2016, Fall 2017)
— Inverse scattering problems, University Paris 7 (Spring 2001,
Spring 2002)
— Riemann-Hilbert problems and applications, University Paris 7
(Spring 2000)
|
Invitations
|
— Aston University (2017 - 2020)
— University of Littoral, Calais, France
(2003, 2005, 2010, 2013, 2015, 2017)
— Institute of Mathematics Jussieu,
University Paris-7 (1995, 1999, 2003-2013, 2015, 2016)
— Courant Institute of Mathematical
Sciences, USA (2006 – 2012, 2015)
— University of Vienna, Austria (2014, 2019)
— ACMAC, University of Crete, Greece
(2011, 2012)
— SISSA, Trieste, Italy (2011)
— Cambridge University, UK (2003)
— The Pennsylvania State University, USA
(2001)
|
Referee Service
|
Referee services provided for the
journals:
Scientific Reports;
Communications in Mathematical Physics;
Communications in Mathematical Sciences;
Communications in Nonlinear Science and Numerical Simulation;
Physica D: Nonlinear Phenomena;
Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Sciences;
Journal of Mathematical Analysis and Applications;
Journal of Mathematical Physics;
Journal of Physics A: Mathematical and Theoretical;
Journal of Differential Equations;
Journal of Physics Communications;
Journal of Nonlinear Mathematical Physics;
Inverse Problems;
Nonlinearity;
Chaos, Solitons and Fractals;
Reports on Mathematical Physics;
Physics Letters A;
Complex Analysis and Operator Theory;
Complex Variables and Elliptic Equations;
Mathematical Methods in Applied Sciences;
Mathematical Problems in Engineering;
Mathematische Nachrichten;
Funkcialaj Ekvacioj;
Studies in Applied Mathematics;
Mathematical Physics, Analysis and Geometry;
Advances in Mathematical Physics;
Advances in Mechanical Engineering;
Analysis and Mathematical Physics;
AIMS Mathematics;
East Asian Journal on Applied Mathematics.
.
|
Selected Talks
|
— 44-th European Conference on Optical Communication, Rome, Italy (2018)
— Equations and Control Theory (DECT 2018), Kharkiv, Ukraine (2018)
— Equations, Mathematical Physics and Applications, Cherkasy, Ukraine (2017)
— Nordic Congress of Mathematicians,
Stockholm, Sweden (2016)
— Spectral Theory, Differential Equations
and Probability, Mainz, Germany (2015)
— Mathematical Analysis and Scientific
Computing, Taipei, Taiwan (2015)
— Analysis and Mathematical Physics,
Kharkiv, Ukraine (2014, 2015, 2016, 2018)
— Hamiltonian PDEs, Frobenius Manifolds
and Deligne-Mumford Moduli Spaces, Trieste, Italy (2013)
— Completely Integrable Systems and
Applications, Vienna, Austria (2011)
— International Congress of Mathematicians
(ICM 2010), Hyderabad, India (2010)
— Journees non lineaires - Journees
Venakides, Paris, France (2010)
— Mathematics and Physics of Integrable
Systems, Dijon, France (2009)
— Lyapunov Memorial Conference, Kharkiv,
Ukraine (2007)
— International Congress of Mathematicians
(ICM 2002), Beijing, Chine (2002)
— European Symposium on Numeric Methods in
Electromagnetics, Toulouse, France (2002)
— International Congress of Mathematicians
(ICM98), Berlin, Germany (1998)
— The Second Applied Mathematics Forum,
Kyongju, Republic of Korea (1998)
— The First Applied Mathematics Forum,
Sokcho, Republic of Korea (1997)
— Conference on Inverse Problems of Wave
Propagation and Diffraction, Aix-les-Bains, France (1996)
|
Selected Publications
|
-
A.Boutet de Monvel, J.Lenells and D. Shepelsky,
The focusing NLS equation with step-like oscillating
background: The genus 3 sector, Commun. Math. Phys. 390 (2022), 1081–1148.
-
Y.Rybalko and D. Shepelsky,
Asymptotic stage of modulation instability for the nonlocal nonlinear
Schrödinger equation, Physica D 428 (2021), 133060.
-
Y.Rybalko and D. Shepelsky,
Curved wedges in the long-time asymptotics for the integrable nonlocal nonlinear
Schrödinger equation, Stud Appl Math. 147 (2021), 872–903.
-
S.Derevyanko, M.Balogun, O.Aluf, D. Shepelsky, and Ja.Prilepsky,
Channel model and the achievable information rates of the optical nonlinear frequency
division-multiplexed systems employing continuous b-modulation,
Optics Express
29, no.5 (2021), 6384-6406.
-
A.Boutet de Monvel, J.Lenells and D. Shepelsky,
The focusing NLS equation with step-like oscillating background: scenarios of long-time asymptotics,
Commun. Math. Phys.
383 (2021), 893-952.
-
Y.Rybalko and D. Shepelsky,
Long-time asymptotics for the integrable nonlocal focusing nonlinear Schrödinger equation
for a family of step-like initial data,
Commun. Math. Phys.
382 (2021), 87-121.
-
Y.Rybalko and D. Shepelsky,
Long-time asymptotics for the nonlocal nonlinear Schrödinger equation with step-like initial data,
J. Differential Equations
270 (2021), 694-724.
-
Y.Rybalko and D. Shepelsky,
Defocusing nonlocal nonlinear Schrödinger equation with step-like boundary conditions:
long-time behavior for shifted initial data,
Journal of Mathematical Physics, Analysis, Geometry
16, no. 4 (2020), 418-453.
-
M.Kamalian, A. Vasylchenkova, D. Shepelsky, Ja.E. Prilepsky and
S.K.Turitsyn,
Full-spectrum periodic nonlinear Fourier
transform optical communication through solving
the Riemann-Hilbert problem,
Journ. Lightwave Technology 38, no. 5 (2020),
3602-3615.
-
D. Shepelsky, A. Vasylchenkova, Ja.E.Prilepsky and
I.Karpenko,
Nonlinear Fourier spectrum characterization of
time-limited signals,
IEEE Transactions on Communications 68, no. 5 (2020),
3024-3032.
-
A.Boutet de Monvel, I.Karpenko and D. Shepelsky,
A Riemann-Hilbert approach to the
modified Camassa-Holm equation with
nonzero boundary conditions,
J. Math. Phys. 61 (2020), 031504.
-
Y.Rybalko and D. Shepelsky,
Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation,
J. Math. Phys. 60 (2019), 031504.
-
A.Boutet de Monvel, J.Lenells and D. Shepelsky,
Long-time asymptotics for the Degasperis-Procesi equation on the half-line,
Ann. Inst. Fourier 69, no. 1 (2019), 171-230.
-
A. Vasylchenkova, J.E. Prilepsky, D. Shepelsky, and A. Chattopadhyay,
Direct nonlinear Fourier transform algorithms for the computation of solitonic spectra in
focusing nonlinear Schrödinger equation,
Communications in Nonlinear Science and Numerical Simulation 68 (2019), 347-371.
- M. Kamalian, A. Vasylchenkova, J.E. Prilepsky, D.
Shepelsky, and S.K.Turitsyn, Signal modulation and
processing in nonlinear fibre channels by employing the
Riemann-Hilbert Problem, Journ. Lightwave Technology 36, no. 24
(2018), 5714-5727.
- A. Vasylchenkova, J.E. Prilepsky, D. Shepelsky, and
A. Chattopadhyay, Direct nonlinear Fourier transform algorithms
for the computation of solitonic spectra in focusing nonlinear
Schrödinger equation, Communications in Nonlinear Science and
Numerical Simulation, (2019), 347-371
- V. Kotlyarov and D. Shepelsky, Planar unimodular
Baker-Akhiezer function for the nonlinear Schrödinger equation,
Annals of Mathematical Sciences and Applications, 2 (2017),
343-384.
- A.Boutet de Monvel, D. Shepelsky, and L.Zielinski,
The short pulse equation by a Riemann-Hilbert approach, Lett.
Math. Phys. 107 (2017), 1345–1373.
- A.Boutet de Monvel, D. Shepelsky, and L.Zielinski, A
Riemann-Hilbert approach for the Novikov equation, SIGMA 12
(2016), 22 pp.
- S. Kamvissis, D. Shepelsky, and L. Zielinski,
The
Robin boundary condition and the shock problem for the focusing
nonlinear Schrödinger equation, Journ. Nonlin. Math. Phys. 22,
No. 3 (2015), 448–473.
- A.Boutet de Monvel and D. Shepelsky, The
Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach, J.
Phys. A: Math. Theor. 48 (2015), 035204 (34pp).
- A.Its and D. Shepelsky,
Initial boundary value
problem for the focusing nonlinear Schrödinger equation
with Robin boundary condition: half-line approach, Proc. R. Soc.
A 469 (2013), 20120199
- A.Boutet de Monvel and D. Shepelsky, A
Riemann-Hilbert approach for the Degasperis-Procesi equation,
Nonlinearity 26 (2013), 2081-2107.
- A.Boutet de Monvel, V.Kotlyarov, and D. Shepelsky,
Focusing NLS equation: long-time dynamics of step-like initial
data, International Mathematics Research Notices (2011), no. 7,
1613-1653.
- A.Boutet de Monvel, V.Kotlyarov, D. Shepelsky and Ch.
Zheng, Initial boundary value problems for integrable systems:
towards the long time asymptotics, Nonlinearity 23 (2010),
2483-2499.
- A.Boutet de Monvel, A.Its, and D. Shepelsky, Painleve-type
asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal.
42 (2010), 1854-1873.
- A.Boutet de Monvel, V.Kotlyarov, and D. Shepelsky,
Decaying long-time asymptotics for the focusing NLS equation
with periodic boundary condition, International Mathematics
Research Notices, No. 3 (2009), 547-577.
- A.Boutet de Monvel, A. Kostenko, D. Shepelsky, and G.
Teschl, Long-time asymptotics for the Camassa-Holm equation,
SIAM J. Math. Anal. 41 (2009), 1559-1588.
- A.Boutet de Monvel and D. Shepelsky, Riemann-Hilbert
problem in the inverse scattering for the Camassa-Holm equation
on the line, in: Probability, Geometry and Integrable Systems,
Math. Sci. Res. Inst. Publ. 55, Cambridge Univ. Press,
Cambridge, 2007, 53-75.
- A.Boutet de Monvel, A.Fokas ,and D. Shepelsky,
Integrable nonlinear evolution equations on a finite interval,
Commun. Math. Phys. 263 (2006), 133-172.
- A.Boutet de Monvel and D. Shepelsky, Initial boundary
value problem for the mKdV equation on a finite interval,
Annales de l'Institute Fourier, 54, no.5 (2004), 1477-1495.
- A.Boutet de Monvel, A.Fokas, and D. Shepelsky,
Analysis of the global relation for the nonlinear Schrödinger
equation, Lett. Math. Phys. 65, no.3 (2003), 199-212.
- D. Shepelsky, A Riemann-Hilbert problem for propagation
of electromagnetic waves in an inhomogeneous, dispersive Omega
waveguide, Math. Phys. Anal. Geom. 3, no.2 (2000), 179-193.
- D.Sheen and D. Shepelsky, Uniqueness in a
frequency-domain inverse problem of a stratified uniaxial
bianisotropic medium, Wave Motion, 31, no.4 (2000), 371-385.
- D.Sheen and D. Shepelsky, Inverse scattering problem
for a stratified anisotropic slab, Inverse Problems, 15, no.2
(1999), 499-514.
- D.Sheen and D. Shepelsky, Uniqueness in simultaneous
reconstruction of multiparameters of a transmission line,
Progress in Electromagnetic Research, PIER 21 (1998), 153-172.
- A.Boutet de Monvel and D. Shepelsky, Direct and
inverse scattering problem for a stratified nonreciprocal chiral
medium, Inverse Problems, 13, no.2 (1997), 239-251.
- E.Khruslov and D. Shepelsky, Inverse scattering
method in electromagnetic sounding theory, Inverse Problems, 10,
no. 1 (1994), 1-37.
- D. Shepelsky, The inverse problem of reconstruction of
the medium's conductivity in a class of discontinuous and
creasing functions, Spectral Operator Theory and Related Topics,
Advances in Soviet Mathematics, 19, ed. V.A.Marchenko, AMS,
Providence, RI (1994), 209-232.
|
|