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We consider a system of N spiking neurons with random synaptic connections which
take values ±1 with equal probability. The resulting system of equations has a stationary
solution equal to 1 for the fraction of neurons having potential x at time t. This solution
describes an asynchronous state. We study the stability of such a state in a perturbative
way and find a threshold for the parameters of the model such that for values larger
than this threshold the stationary asynchronous state is stable otherwise it is unstable.
In other terms the stability of the asynchronous state holds only for relatively small
random perturbations.
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1. Introduction and Main Results

The synchronized behaviour of systems of neurons is a central issue for the existence
of biological organisms. One example is the Parkinson’s disease which takes place
mostly for the synchronized activity of a particular system of neurons. The stability
of synchronous and asynchronous state of activity of neurons is as important as the
existence of such states. One way of treating the Parkinson’s disease is to send a
bipolar electric impulse to the firing neurons which makes the synchronized system
unstable a.

The question of synchronization of activity states of neurons has bean treated
by means of models of interacting neurons by various authors (see Refs. 2-13).
Some authors considered the influence of excitatory and inhibitory coupling (see
Refs. 3, 11, 5,14) but usually it has been considered only one type of interaction:
either excitatory or inhibitory coupling. Thus Abbot et al4 have found results on
the stability of synchronous and asynchronous state of firing neurons as a function
of the sign of the synaptic interaction. In Ref. 3 the authors show, for example, that

aAnother important example is synchronization of firing characteristics of epileptic activity (see
Ref. 1)

1



February 12, 2010 16:19 WSPC/Guidelines as˙0310

2 M.Shcherbina and B.Tirozzi

if the input to a neurons is inhibitory then the synchronous state is always stable.
This unexpected result makes the problem more appealing. In Ref. 4 it is studied
the stability of asynchronous state of N interacting IF neurons with excitatory
coupling.

An interesting problem is to describe the behavior of the membrane potential in
a network of neurons with both excitatory and inhibitory connections possibly ran-
domly distributed. This case is not dealt in the previous literature and we analyze
it in the present paper.

We consider the synaptic interaction as a variable E(t) characterizing the time
evolution of the current coming from the different neurons and multiply it by a
random variable η̃i which takes values ±1 with probability one half. This implies
that the dynamical equations of the IF system of neurons have a more complicated
structure because the right hand side contains a stochastic process generated by
the sum of the random contributions of the synaptic inputs.

The state analyzed in this paper is the case of asynchronous firing, i.e. a state
with uniform distribution of neural activities. We have to introduce another (
stochastic differential) equation for the synaptic interaction with respect to the
system treated in Ref. 4.

The stability of the system is derived by studying the dispersion of the stochastic
process defining the synaptic interaction. We study the simple case of the evolution
equations

x′i(t) = F (xi) + ξ(t)G(xi) (1)

for 0 < xi < 1, i = 1, . . . , N and F (x) and G(x) being constant. We find that
the dispersion of ξ(t) remains always bounded and ξ(t) converges to a stationary
stochastic process. On the other hand, there is a threshold for F/G such that above
it the dispersion of an arbitrary small perturbation ξ̃1(t) remains bounded and
below it the dispersion grows up to the infinity. In other words, if the random
interaction is small enough with respect to the deterministic part, then the system
is stable and the opposite takes place for large random interaction.

The system of equations (1) describes the behavior of a system of N IF neurons .
When xi reaches 1, it emits a spike and resets immediately to 0 in this case ξ(t), the
synaptic input to the neurons connected with the neuron reaching the threshold, is
incremented as follows:

ξ(t)→ ξ(t) + α
η̃i√
N
e−α(t−tj), (2)

where α is a constant characterizing the strength of the synaptic coupling, tj is the
moment of the j-th spike, and {ηj} are independent random variables for different
spikes, assumming values ±1 with probability 1

2 . Thus the random interaction ξ(t)
has the form

ξ(t) = α
∑

tj≤t

η̃j√
N
e−α(t−tj). (3)
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By a standard way, denoting

y(x) = F0

∫ x

0

dx′

F (x′)
, F−1

0 =
∫ 1

0

dx′

F (x′)
D(y) = F0G(x)F−1(x),

we replace the system (1) by

y′i(t) = F0 + ξ(t)D(yi), (4)

with the same condition at the point y = 1.
Let us define the function

NN (y, t) =
1
N

N∑

i=1

θ(yi(t)− y), (5)

where θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0. NN (y, t) is the ratio of the number
of neurons with yi ≥ y and N . Then it is evident that for any smooth function f(y)
we have

1
N

N∑

i=1

f(yi(t)) =
∫ 1

0

f(y)dNN (y, t) (6)

and

∂

∂t

1
N

N∑

i=1

f(yi(t)) =
1
N

N∑

i=1

f ′(yi(t))y′i(t)

=
1
N

N∑

i=1

f ′(yi(t))(F0 + ξ(t)D(yi(t)) =
∫ 1

0

f ′(y)(F0 + ξ(t)D(y))dNN (y, t).

(7)

Let us assume that for any y, t there exists a limit

N (y, t) = lim
N→∞

NN (y, t),

this measure is absolutely continuous with respect to the Lebesgue measure and
the respective density ρ(y, t) is a smooth function in y, t. Then (6) and (7) give us
in the limit N →∞:

∂

∂t

∫ 1

0

f(y)ρ(y, t)dy =
∫ 1

0

f ′(y)(F0 + ξ(t)D(y))ρ(y, t)dy

= −
∫ 1

0

f(y)
∂

∂y
((F0 + ξ(t)D(y))ρ(y, t)) dy

and since f(y) is an arbitrary function we obtain the equation

J(y, t) = ρ(y, t)(F0 + ξ(t)D(y)). (8)

From (4),(5), we get

∂

∂t
ρ(y, t) = − ∂

∂y
J(y, t), (9)

with the periodic boundary conditions for J(y, t): J(0, t) = J(1, t).
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With above definitions representation (3) in the limit N →∞ takes the form

ξ(t) = α

∫ t

0

e−α(t−t′)√J(1, t)dη(t′)

= α

∫ t

0

e−α(t−t′)√ρ(1, t′)(F0 + ξ(t′)D(1))dη(t′),
(10)

where η(t) is a standard Gaussian white noise.
We study the simplest case when D(y) does not depend on y. Hence, in view of

the above discussion, we have to study the system of equations:
∂ρ

∂t
= −(F0 + ξ(t)D)

∂

∂y
ρ(y, t)

dξ(t) = −αξ(t)dt+ α
√
ρ(1, t)(F0 + ξ(t)D)dη(t)

ρ(0, t) = ρ(1, t).

(11)

It is easy to see that this system has the solution

ρ(y, t) = 1
J(y, t) = (F0 + ξ0(t)D),

(12)

where the random process ξ0(t) is a solution of the stochastic differential equation

dξ0(t) = −αξ0(t)dt+ α
√
F0 + ξ0(t)Ddη(t). (13)

We remark here that it is proven in Lemma 1 that the argument of the square root
is always positive.

The main goal of this paper is to study the solution (12)-(13) and its stability
with respect to small perturbations.

Theorem 1: The process ξ0(t) converge in probability, as t→∞, to the stationary
diffusion process with the correlation function

R(t− s) = F0(2α)−1e−α(t−s). (14)

To study the stability of solution (12) we take ε small and consider

ρ(y, t) = 1 + ερ1(y, t), ξ(t) = ξ0(t) + εξ̃1(t). (15)

Then in the first order with respect to ε we obtain the system:
∂

∂t
ρ1(y, t) = −(F0 + ξ0(t)D)

∂

∂y
ρ1(y, t)

dξ1(t) = −αξ1(t)dt+
αξ1(t)

2
√
F0 + ξ0(t)D

dη(t) +
α

2
ρ1(1, t)

√
F0 + ξ0(t)Ddη(t)

ρ1(0, t) = ρ1(1, t).

(16)

Definition 2: We say that some solution (ρ, J, ξ) of the system of equations (8)-
(10) is stable, if for any perturbation ρ1(y, 0) of the initial conditions, the pertur-
bation terms ρ1(y, t), ξ1(t) satisfy the inequalities:

E

{∫ 1

0

|ρ1(y, t)|2dy
}
≤ constE

{
max
y
|ρ1(y, 0)|2

}

E

{
ξ2
1(t)

}
≤ constE

{
maxy |ρ1(y, 0)|2

}
.

(17)
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Here and below we denote by the symbol E{. . .} the averaging with respect to all
random parameters of the problem.

Theorem 3: Solution (12) is stable if
F0

αD2
>

1
4

and unstable if
F0

αD2
<

1
4

.

2. Proofs

Proof of Theorem 1: By using the representation

ξ(t) = e−αtξ0(0) + α

∫ t

0

e−α(t−t′)√(F0 + ξ0(t′)D)dη(t′), (18)

one can get easily that

E{ξ0(t)} = e−αtE{ξ0(0)},
so we get that the mean value of ξ0(t) tends to zero exponentially. Now for t > s

let us write

ξ0(t) = ξ0(s)e−α(t−s) + α

∫ t

s

e−α(t−t′)√F0 + ξ0(t′)Ddη(t′).

Multiplying this system by ξ0(s) and taking the expectation, we get

E{ξ0(t)ξ0(s)} = E{ξ0(s)ξ0(s)}e−α(t−s), (19)

because, as usually in the theory of stochastic integrals,

E

{
ξ0(s)

∫ t

s

e−α(t−t′)√F0 + ξ0(t′)Ddη(t′)
}

= E

{∫ t

s

e−α(t−t′)√F0 + ξ0(t′)Ddη(t′)
∣∣∣∣ ξ0(s)

}
E

{
ξ0(s)

}
= 0.

Thus we are left to study E{ξ2
0(s)}. Using again formula (18), by the standard way

we get

E{ξ0(s)ξ0(s)} = E{ξ0(0)ξ0(0)}e−2αs + E

{∫ s

0

e−2α(s−t′)(F0 +Dξ0(t′))dt′
}

= E{ξ0(0)ξ0(0)}e−2αs +
∫ s

0

e−2α(s−t′)(F0 +DE{ξ0(t′)})dt′

= E{ξ0(0)ξ0(0)}e−2αs +
∫ s

0

e−2α(s−t′)(F0 +De−αt
′
E{ξ0(0)})dt′

= E{ξ0(0)ξ0(0)}e−2αs +
F0

2α
(1− e−2αs) +

D

α
E{ξ0(0)}(e−αs − e−2αs).

�
To prove Theorem 3 we need some additional information about ξ0(t).

Lemma 4: Denote γ = 2(αD2)−1F0. Then

E(t) = E

{
(F0 +Dξ0(t))−1

}
≤ C <∞, (if γ − 1 > 0)

and E(t) =∞, if γ − 1 < 0.
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Proof: To simplify formulas below we make the change of variables

β = (αD2)−1, t̃ = (αD)2t,

ξ̃(t̃) = F0 +Dξ(t̃/(αD)2), ρ̃(t̃) = ρ(t̃/(αD)2), η̃(t̃) = αD · η(t̃/(αD)2)
(20)

Then η̃(t̃) is again a standard white noise with respect to t̃. But to simplify the
notations below we write t instead of t̃ and η instead of η̃. Then (11) takes the form

∂ρ̃

∂t
= −(αD)−2ξ̃

∂

∂y
ρ̃(y, t)

dξ̃(t) = −β(ξ̃(t)− F0)dt+
√
ρ̃(1, t)ξ̃(t)dη(t)

ρ̃(0, t) = ρ̃(1, t)

(21)

and (13) takes the form

dξ̃0(t) = −β(ξ̃0(t)− F0)dt+
√
ξ̃0(t)dη(t), (22)

where ξ̃0(t) = F0 +Dξ0(t/(αD)2).
Let p(x, t | y, s) be the probability density of transition from y at time s to x at

time t of the diffusion process generated by the solutions of the equation (22):

Prob
{
ξ̃0(t) ∈ ∆ ⊂ R, | ξ̃0(s) = y

}
=
∫

∆

p(x, t
∣∣∣∣ y, s)dx. (23)

Then one can write the direct Kolmogorov equation or the Fokker-Planck equation
(see, e.g. Ref. 16) for the function p(x, t|y, s):

∂

∂t
p = β

∂

∂x

(
(x− F0)p

)
+

1
2
∂2

∂x2

(
xp

)
. (24)

with the initial condition

p(x, s | y, s) = δ(x− y). (25)

Taking the Fourier transform

p̂(k, t, y, s) =
∫
eikxp(x, s | y, s)dx,

we obtain from (24) the first order differential equation for p̂(k, t)

∂

∂t
p̂(k, t, y, s) = (

ik2

2
− βk)

∂

∂k
p̂(k, t, y, s) + iβF0kp̂(k, t, y, s) (26)

with the initial and the boundary conditions

p̂(k, s, y, s) = eiky, p̂(k, t, y, s)→ 0, k → ±∞. (27)

Let us make the change of variables

k̃ = β−1 log
k

k + 2iβ
⇔ k = − 2βieβk̃

eβk̃ − 1
,

p̂(k, t) = ec(k̃,t).
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Then we obtain the standard linear equation of the first order with respect to the
function c(k̃, t):

∂c

∂t
+
∂c

∂k̃
= 2β2F0

eβk̃

eβk̃ − 1
.

Therefore, by a standard method we get:

c(k̃, t) = c0(k̃ − t+ s) +
∫ t

s

2β2F0
eβ(k̃−t+t′)

eβ(k̃−t+t′) − 1
dt′

= c0(k̃ − t+ s) + 2βF0

(
log(eβk̃ − 1)− log(eβ(k̃−t+s) − 1)

)
,

(28)

where the function c0 should be found from the initial conditions:

c0(k̃) = iyk = y · 2βeβk̃

eβk̃ − 1
.

So, we have from (28)

c(k̃, t) = y · 2βeβ(k̃−t+s)

eβ(k̃−t+s) − 1
+ 2βF0

(
log(eβk̃ − 1)− log(eβ(k̃−t+s) − 1)

)
.

Now, replacing eβk̃ by
k

k + 2iβ
and putting p̂(k, t) = ec(k,t), we obtain :

p̂(k, t, y, s) = (2iβ)−2βF0
λ2βF0

1 (τ)
(k + iλ1(τ))2βF0

exp
{
− kλ2(τ)y
k + iλ1(τ)

}
, (29)

with

λ1(τ) =
2β

1− e−βτ , λ2(τ) =
2βe−βτ

1− e−βτ .

where τ = t− s.
We remark that one can get also another solution by separating the variables

of (26) which satisfies the initial condition in t but doesn’t go to 0 for k →∞.
To find p(x, t | y, s) we have to take the inverse Fourier transform of (29):

p(x, t | y, s) =
λ2βF0

1 (τ)e−λ1(τ)x−λ2(τ)y

2π(2iβ)2βF0

×
∫
dk(k + iλ1(τ))−2βF0 exp

{
iλ1(τ)λ2(τ)y
k + iλ1(τ)

− ix(k + iλ1(τ))
}
,

(30)

We remark first that, by the standard method, i.e., taking the integral over the
contour |k| = R, =k ≥ 0 with R→∞ instead of the real line, we get that for x < 0
p(x, t | y, s) = 0.

To take the integral in (30) for x > 0 we observe that, if we define the function

w(z) = z−ν
∫
dk(k + iλ)−ν−1 exp{ia(k + iλ)−1 − iz2(k + iλ)}, (31)
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then

w′′ = (
ν2

z2
+ 4a)w − 1

z
w′ ⇒ z2w′′ + zw′ − (ν2 + 4az2)w = 0. (32)

Indeed, denoting for simplicity

Iν =
∫
dk(k + iλ)−ν exp{ia(k + iλ)−1 − iz2(k + iλ)}, (ν = ν − 1, ν, ν + 1),

we have

w = z−νIν+1,

w′ = −νz−ν−1Iν+1 − 2iz−ν+1Iν ,
w′′ = ν(ν + 1)z−ν−2Iν+1 + 2i(2ν − 1)z−νIν − 4z−ν+2Iν−1.

(33)

From the second line we get

−2iz−ν+1Iν = w′ + νz−1w. (34)

Besides, integrating by parts, we obtain
∫
dk(− ia

(k + iλ)2
− iz2)

exp{ia(k + iλ)−1 − iz2(k + iλ)}
(k + iλ)ν−1

= (ν − 1)
∫
dk

exp{ia(k + iλ)−1 − iz2(k + iλ)}
(k + iλ)ν

⇒ z2Iν−1 = −aIν+1 + i(ν − 1)Iν
⇒ z−ν+2Iν−1 = −aw + i(ν − 1)z−νIν
= −aw − ν − 1

2z
(w′ +

ν

z
w).

(35)

Substituting (35) and (34) in (33) we obtain (32). Thus (see Ref. 15), w(z) =
Iν(2a1/2z) (up to the multiplicative constant), where

Iν(z) =
(z

2

)ν ∞∑
m=0

z2m

22mm!Γ(m+ ν + 1)

is the modified Bessel function.
Now, using representation (31) with a = λ1(τ)λ2(τ)y, z2 = x, ν = 2βF0 − 1 =

γ − 1, one can obtain from (30) that for x > 0

p(x, t | y, s) = Cλ1(t)e−λ1(t)x−λ2(t)y

(
λ1(t)x
λ2(t)y

)(γ−1)/2

Iγ−1

(
2
√
λ1(t)λ2(t)xy

)
, (36)

where C is some constant. One can see that this solution behaves like Cxγ−1, as
x ∼ 0 and that ξ̃0(t) takes positive values.

Proof of Theorem 3: Now we seek the solution of (21) in the form ξ̃(t) = ξ̃0(t) +
εξ̃1(t) and ρ1(y, t) = 1 + ερ̃(t). Let us substitute these expressions in (21) and take
the first order terms with respect to ε. Then, since the first equation of (21) has
the solution

ρ̃(y, t) = ρ(y − (αD)−2σ, 0) = 1 + ερ1(y − (αD)−2σ, 0) + o(ε), (37)
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with (σ(t) =
∫ t

0

ξ̃0(t′)dt′, we get the system of three stochastic differential equa-

tions:

dξ̃0(t) = −β(ξ̃0(t)− F0)dt+
√
ξ̃0(t)dη(t)

dσ(t) = ξ̃0(t)dt

dξ̃1(t) = −βξ̃1(t)dt+
ξ̃1(t)

2
√
ξ̃0(t)

dη(t) +
1
2
ρ̃1(σ(t))

√
ξ̃0(t)dη(t),

(38)

where

ρ̃1(σ) = ρ1(1− (αD)−2σ, 0) (39)

The Kolmogorov equation in this case is too complicated, but using the fact,
that the third equation is linear with respect to ξ̃1(t), we can solve this equation
directly. First we solve the homogeneous version of the equation.

dζ0(t) = −βζ0(t)dt+
ζ0(t)dη(t)

2
√
ξ̃0(t)

. (40)

We seek ζ0(t) in the form

ζ0(t) = ξ̃
1/2
0 (t)ef(t), (41)

where E{|f ′(t)|ν} < ∞ for some small enough ν. Then, by using the Ito formula
(see Ref. 16), one can write

dζ0(t) =
bfd̃ξ0(t)

2ξ̃1/2
0 (t)

ef(t) − ξ̃0(t)

8ξ̃3/2
0 (t)

ef(t)dt+ ξ̃
1/2
0 (t)f ′(t)ef(t)dt

=
1
2
ef(t)dη(t) + ξ̃

1/2
0 (t)ef

(
− β(ξ̃0(t)− F0)

2ξ̃0(t)
− 1

8ξ̃0
+ f ′(t)

)
dt.

Here we have used the first equation of (38) for dξ0(t). Now we compare the coeffi-
cients of dη(t) and dt in the above expression for dζ0(t) with those in (40). It is evi-
dent that the coefficients of dη(t) coincide, because in view of (41) 1

2e
f = 1

2ζ0ξ
−1/2
0 .

Furthermore, comparing the coefficients of dt, we get

ξ̃
1/2
0 (t)ef

(
− β(ξ̃0(t)− F0)

2ξ̃0(t)
− 1

8ξ̃0
+ f ′(t)

)
= −βξ̃1/2

0 (t)ef ⇒

f ′(t) = −β
2
− 2γ − 1

8ξ̃0(t)
⇒ f(t) = −βt

2
− 2γ − 1

8

∫ t

0

dt′

ξ̃0(t′)

⇒ ζ0(t) = ξ̃
1/2
0 (t) exp

{
− βt

2
− 2γ − 1

8

∫ t

0

dt′

ξ̃0(t′)

}

with γ defined in Lemma 4. Now we seek ξ̃1(t) - the solution of (38) in the form:

ξ̃1(t) = ζ0(t)ζ1(t),
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where ζ1(t) is an unknown Markov process with the stochastic differential

dζ1(t) = u(t)dt+ v(t)dη(t).

Here u(t) and v(t) are unknown coefficients, which one can find, using the Ito
formula. Indeed, by this formula

dξ̃1(t) = ζ1(t)dζ0(t) + ζ0(t)dζ1(t) + v(t)
ζ0(t)

2ξ̃1/2
0 (t)

dt

=
(
− βξ̃1(t)dt+

ξ̃1(t)

2ξ̃1/2
0 (t)

dη(t)
)

+
(
ζ0(t)u(t) +

v(t)ζ0(t)

2ξ̃1/2
0 (t)

)
dt+ v(t)ζ0(t)dη(t).

Now by using the third equation in (38) we find

ζ0(t)u(t) +
v(t)ζ0(t)

2ξ̃1/2
0 (t)

= 0, v(t)ζ0(t) =
α

2
ρ̃(σ(t))ξ̃1/2

0 (t),

and so

v(t) =
1
2
ζ−1
0 (t)ρ̃(σ(t))ξ̃1/2

0 (t), u(t) = −1
4
ζ−1
0 ρ̃(σ(t)),

which gives us

ξ̃1(t) = −1
4
ζ0(t)

∫ t

0

ζ−1
0 (s)ρ̃(σ(s))ds+

1
2
ζ0(t)

∫ t

0

ζ−1
0 (s)ρ̃(σ(s))ξ̃1/2

0 (s)dη(s). (42)

Now, one can find easily, that if 2γ − 1 > 0, then we can bound the variance of
ξ̃1(t) as follows:

E{ξ̃2
1(t)} =

1
16
E

{
ζ2
0 (t)

[ ∫ t

0

ζ−1
0 (s)ρ̃(σ(s))ds

]2}

+
1
4
E

{
ζ2
0 (t)

∫ t

0

ζ−2
0 (s)|ρ̃2(σ(s))|ξ̃0(s)ds

}
.

(43)

Here the second integral satisfies the bound:

I1 = ζ2
0 (t)

∫ t

0

ζ−2
0 (s)|ρ̃2(σ(s))|ξ̃0(s)ds

= ξ̃0(t)
∫ t

0

exp
{
− β(t− s)− 2γ − 1

4

∫ t

s

dt′

ξ̃0(t′)

}
|ρ̃2(σ(s))|ds

≤ |maxt ρ̃|2ξ̃0(t)
∫ t

0

dse−β(t−s) ≤ |max
t
ρ̃|2ξ̃0(t)β−1.
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And the first integral, by using the Schwartz inequality, can be estimated as

I2 =
∣∣∣∣ζ0(t)

∫ t

0

ζ−1
0 (s)ρ̃(σ(s))ds

∣∣∣∣

≤ |maxt ρ̃| ξ̃1/2
0 (t)

∫ t

0

exp
{
− β

2
(t− s)− 2γ − 1

8

∫ t

s

dt′

ξ̃0(t′)

}
ξ̃
−1/2
0 (s)ds

≤ |maxt ρ̃| ξ̃1/2
0 (t)

[ ∫ t

0

e−β(t−s)/2ds
]1/2

[ ∫ t

0

ξ̃−1
0 (s) exp

{
− β

2
(t− s)− 2γ − 1

4
γ

∫ t

s

dt′

ξ̃0(t′)

}
ds

]1/2

= 4βξ̃1/2
0 (t) |maxt ρ̃| (1− e−βt/2) · I1/2

3 .

Using the fact that

ξ̃−1
0 (s) = − d

ds

∫ t

s

dt′

ξ̃0(t′)
,

one can integrate by parts in I3 and obtain

I3 =
4

2γ − 1
exp

{
− β

2
(t− s)− 2γ − 1

4

∫ t

s

dt′

ξ̃0(t′)

}∣∣∣∣
t

0

− 2β
2γ − 1

∫ t

0

exp
{
− β

2
(t− s)− 2γ − 1

4

∫ t

s

dt′

ξ̃0(t′)

}
ds

≤ 4
2γ − 1

.

Now let us recall that by definition ρ̃(σ(t)) = ρ1(1− (αD)−2σ(t), 0). Therefore

|max
t
ρ̃| = |max

y
ρ1(y, 0)|.

Thus, we obtain from the above estimates that

E{ξ̃2
1} ≤ const |maxy ρ1(y, 0)|2E{ξ̃0(t)}

= const |maxy ρ1(y, 0)|2E{F0 +Dξ0(αDt)},
were we have come back to our initial notations. Now Theorem 1 gives us the
statement of Theorem 3 for 2γ − 1 > 0.

Now, if 2γ − 1 < 0, taking ρ1(y, 0) = eikπ, we get from (43) that

E{ξ̃2
1(t)} ≥ 1

4
E

{
ξ̃0(t)

∫ t

0

exp
{
− 1

2
β(t− s) +

1− 2γ
8

∫ t

s

dt′

ξ̃0(t′)

}
ds

}
. (44)

Let us choose ε
1−ε < βF0. Then, using Lemma 4 one can conclude that

E{ξ̃−ε/(1−ε)0 (t)} ≤ C <∞, E{ξ̃−1
0 } =∞.

Thus, denoting by I0 the integral in (44) and using the Holder inequality with
p = ε−1, q = (1− ε)−1, we obtain

E{(ξ̃ε0(t)Iε0)ξ̃−ε0 } ≤ E1/p{ξ̃0I0}E1/q{ξ̃−εq0 }
⇒ E{ξ̃0I0} ≥

(
E{Iε0}E(ε−1){ξ̃−ε/(1−ε)0 }

)1/ε

.
(45)
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But

I0 =
∫ t

0

ds exp
{
− 1

2
β(t− s) +

1− 2γ
8

∫ t

s

dt′

ξ̃0(t′)

}

≥
∫ t/2

0

ds exp
{
− 1

2
β(t− s) +

1− 2γ
8

∫ t

t/2

dt′

ξ̃0(t′)

}

≥ 1
2β
−1e−βt/2 exp

{
1− 2γ

8

∫ t

t/2

dt′

ξ̃0(t′)

}
.

Now we get from (44) and (45) and the Jensen inequality

E{ξ̃2
1(t)} ≥ Ce−βt/2 exp

{
1− 2γ

8

∫ t

t/2

E{ξ̃−1
0 (t′)}dt′

}
=∞.

Here we have used Lemma 4, according to which E{ξ̃−1
0 (t′)} =∞ for γ < 1. �
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