Central limit theorems for order parameters of the Gardner problem

M.Shcherbina} B.Tirozzif

Abstract

Fluctuations of the order parameters of the Gardner model for any a < a. are studied. It is
proved that they converge in distribution to a family of jointly Gaussian random variables.

1 Introduction and Main Results

The Gardner model was introduced in [G] to study the typical volume of interactions between each
pair of N Ising spins which solve the problem of storing a given set of p random patterns {& (1) }2:1

The components fg” ) of the patterns are taken usually to be independent random variables with zero
mean and variance 1. After a simple transformation this problem is reduced to the analysis of the
asymptotic behaviour of the random variable

Onp(k) = a;vl/ dJ 1‘[ ON2(eW), ) — k), (L.1)

(J7J):

where J € R", the function §(z) is zero in the negative semi-axis and 1 in the positive, and oy is

the Lebesgue measure of the N-dimensional sphere of radius N/2. Then, the question of interest is

the behaviour of 3 log O (k) in the limit N,p — oo, £ — . Gardner [G] had solved this problem

by using the so-called replica trick, which is completely non-rigorous from the mathematical point of

view but sometimes very useful in the physics of spin glasses (see [M-P-V] and references therein).
She obtained that if o < a.(k), with

ae(k) \/ﬂ/ (u+k)e2du) (1.2)

then the following limit exists

1 u\/q+k
li —E{l k)} = i E {logH
Nooay o W08 ONs(R)) = oln, [O‘ { o8 < Vi >} (1.3)
1 1 :
—_ T4 Cloe(l —
o142 og( Q)}
Here v is a Gaussian random variable with zero mean and variance 1, H(xz) is defined as
1 o
H(z) = e~y (1.4)

V2T Ja

and here and below we denote by the symbol E{...} the averaging with respect to all random pa-
rameters of the problem and also with respect to u. And % log ©n (k) tends to minus infinity for
a > aq(k).
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In the paper [S-T2] (see also [S-T3]) we have studied the Gardner problem in a regular mathematical
way and proved that for any o < o formula (1.3) is valid while for o > v, any +-E{log O (k)} —
—00, as N,p — 0o, p/N — «. We studied the case fg”) = +1, but of course the same results are valid
for any distribution fg”) with E{fg”)} =0, E{(gg“))Q} =1, E{|§§“)|4} < oo0.

To obtain this results we introduced an intermediate "modified” Hamiltonian depending on the
parameters e, z, h > 0:

L E— (W )N-2\ 2
H(JT, K, 2,¢€) E—ZlogH( e +5(J. ), (1.5)
p=1
where the function H(z) is defined in (1.4).
The partition function for this Hamiltonian is
Znp(k,z,) = o) /dJ exp{—H(J., k. z€)}. (1.6)
We denote also by (...) the corresponding Gibbs averaging and
1
Inpk,z.€) = N log Zn p(k, 2, €). (1.7)

Comparing with the model (1.1), one can see that we replace the functions 6(z) by H(z/\/€), to have
possibility to study the model (1.1) by means of statistical mechanics of the systems with random
interaction (see [S-T1]-[T5]). When ¢ — 0, H(z/\/e) — 0(x), so the model (1.1) is the limiting case
of (1.5)-(1.7). But the corresponding statement (see Theorem 3 of [S-T2]) is rather nontrivial and in
this paper we are going to study the model (1.5)-(1.7) itself with some fixed positive . The other
difference from (1.1) is that we introduce an additional parameter z > 0 to replace the integration
over the sphere (J,J) = N in (1.1) by the integration in the whole space R in (1.6). It is proven in
[S-T2] that if we find the thermodynamic limit

lim E{fnp(k,z,€)} = F(o, k, z.¢€)

N,p—oco,p/N—a

and choose z* from the condition

*

R A z
F(aakaz 75)+ 9 —IZII>161{F(0£,]{J,,Z,6)+2},

then

N,p—o00,p/N—a

El

lim N—lE{lo a*l/ dJ exp{—H(J, k,0,¢ } = F(a, k, 2%, ¢ +f.
BN | 70N p{—H( ) ( )+ 3

In [S-T2] we have proved the theorem:

Theorem 1 For any o < 2, k > 0, there exists e*(a, k) such that for any e < e*(a, k) and z < e~ /3
there exists

lim E{fN,p(kazaE)} = F(a,k,z,e),

N,p—oco,p/N—a
. u\/q+k
= — 1.
F(a,k,z,¢) max Og}glR [aE {logH <m>} (1.8)

1 gq 1 z
S S | S

where u is a Gaussian random variable with zero mean and variance 1.



Similar results for small a were obtained in [T2] for the so-called Gardner-Derrida model. In the paper
[T4] the fluctuation of the order parameters for the Gardner-Derrida model were studied, but only for
small enough a.

An important ingredient of the analysis of the free energy of the model (1.5) in [S-T2] was the
proof of the fact that the variance of its order parameters (or the overlap parameters) disappears in
the thermodynamic limit. In the present paper we study the behaviour of fluctuations of the overlap
parameters, defined as

Rin=—JO, 7MY (,m=1,...n), (1.9)

where the upper indexes of the variables J mean that we consider n replicas of the Hamiltonian (1.5)
with the same random parameters {£(*) }‘Z:l, but different JU), ... J™.
We introduce also the notations:

G=N'"2((Ri2) —q),

1 (1) +(m

1 (1.10)

= (@),

Here and below J = J — (J) and (J) = ((J1),... (Jx)) € RV, where (...) is the Gibbs averaging with
respect to the Hamiltonian (1.5). (¢, R) is the solution of the system of equations:

= o ()
y = mEl{(ﬁquk)A <¢%)} (1.11)

q
— _|_ ,
(R-—¢)? R-—q

3

with L4
————1log H(x).

5z 08 H()
These equations are equivalent to %—J; =0 g—g = 0, for the function F(q, R;k, z,¢) which is defined
by the expression in the r.h.s. of (1.8) before taking maxg min,. It is proven in [S-T2] that if a < 2,

e <e*(a,k) and z < €'/3, the the system (1.11) has a unique solution.

A(z) =

To avoid additional technical difficulties below we assume that {fg” )} are independent Gaussian
random variables with zero mean and variance 1.
The main result of the paper is

Theorem 2 Consider any a < 2, k > 0, ¢ < e*(a,k) and z < e /3. Then for any integer n
the families of random wvariables {V N (R, — E{(Rim))}i<m<n, converges in distribution, as N,p —
00, p/N — a, to the Gaussian family of random variables {vl’m}l<m§n, with the covariance matrix:

E{vl,mvl,m} A*,
E{v1,mvim } B* (m #m'), (1.12)
E{vymuvy m } C* (m,m', 1" are dif ferent).
In particular,
. r'(2n—1)
1 E (T Ay
N,p%(xlngl/N%a {< 1’2>} F(n — 1) *
. I'(2n—-1)
1 E {(T%" S — 1.1
N,p%(xlngl/N%a {< 1 >} F(n — 1) * ( 3)
. . I'(2n—-1)
1 FE 2n = — ("
N,paogg/Naa {a™} (n—1)



where the constants A*, B*, C*, A,, B, Cy depend on a, k, z, e and all odd moments for these random
variables tend to zero.

Remark 1 In fact it follows from our proof (see proofs of Lemmas 3,4,5 in Sec.2) that {Tjm}i<m<n
and {T}}i1<n in some sense do not depend on the random variables {fgﬂ)}, i.e. if we consider P- some
product of {Tl,m}l<m§n and {Tl}lg'm then
. 2
o lm  B{(P) = BP) = (1.14)

As it was mentioned above, similar results were obtained in [T4] for the Gardner-Derrida model for
small a and for the Sherrington-Kirkpatrick model for the high temperature. We would like to mention
also the work [Gu-T], where the fluctuations of the overlap parameters for the Sherrington-Kirkpatrick
model in the high temperature region were studied by the method of characteristic functions.

One of the most important feature of our Hamiltonian (1.5), which allows us to prove Theorems 1
and 2 for any a < a.(k) is that it has the form

H=Yg(5) ~ 2(IT) 8=
m

N1/2

NG

where g(x) is a concave function. It allows us to use the Brascamp-Lieb inequalities ( see [1]), according
to which for any integer n and any x € RN

(5)") = ey '

Besides, for any smooth function f

(J’g(l"))’ g(m) :—IOgH(

), (1.15)

1
((f = (D7) < (VA1) (1.17)
Below we use the representation (1.15) of H and the following properties of the functions g(z):
g) <0, —C < g" <0, [¢) (@) <C, (s=3,...,6). (1.18)

In fact the only place, where we use the real form of g(z), is that the limiting system of equations
(1.11) has the unique solution (see [S-T2]).

We would like to mention that here and below we use C' to denote some constant whose value
is not important for us, but which is independent of N,p. This value can be different in different

formulas.
We use also notations:
1 ~ 1 y - 1
S = Y€MW, B =53"d (S (S), U= 5 3 (0" (S))) +¢%(5(0)). (1.19)
u W

An important ingredient of our proof is the following proposition:

Proposition 1 There exists dy > 0, C > 0,Ny > 0 such that for any § < dy, N > Ny

PI‘Ob{| R, 2> — E<R1 2>| > 5} < 6_N52/QC,

) )

(
Prob{|(Ri,1) — E(R11)| > ¢} < 6*1\“52/20’
) . , (1.20)
Prob{|(R12) — E(Ri2)| > 6} < e” N/,
Prob{|(U1) — B{U1)| > 8} < e~ N9/2C,
Corollary 1 There exist C > O, Ng > 0 such that for any N > Ny
C"T'(n)
E{[(R12) — B{R12)["} <= —s (1.21)



2 Proof of Main Results

Proof of Proposition 1
For the proof of Proposition 1 we need the following remark:

Remark 2 It was proven in [S-T2] that there exist constants My, mqg such that for any M > My,
N>1
Prob{((J,J)) > MN} < ¢~ Nmo(M=Mo) (2.1)

Besides, it is well known that if we define

L& e g 1O L))

then there exist Cy, co such that for any C > Cy, N > 1
Prob{||A.|| > C} < e Neo(€=C0)  Prob{||A,]| > C} < e~ Neo(C=C0) (2.3)

(see e.g. [S-T1]).

We prove Proposition 1 using a method proposed in [T4] with small modifications which we need to
study the case, when the variables {.J;} are unbounded.

Lemma 1 Let u € R™ be a Gaussian random vector with normally distributed independent compo-
nents {u; 1", and f(x) be some function defined in R™. If there exist Ay and so > 0 such that f(x)
satisfies the conditions:

P(A) = Prob{|Vf(u))]> > 4} < e “A=40) (v4 > 4) (2.4)
E{etsol} < e%0B, (2.5)

Then for s < %50
E{e:ts(f(u)—Ef(u))} < 62A052(1 + (AO + C—l)esz—CAO/Q)‘ (2.6)

Proof.
Consider v € R™ -another Gaussian random vector with normally distributed independent compo-
nents {v;};; which are independent of {u;}",. Define

Gse(u,v) = exp{s(f(u) — (VI —tu+ Vtv))}, @s(t) = E{Gsy(u.v)}.

Then, integrating by parts, we get

AW = SE{S (VT tu+ Viv) (e F — )G wv))

s2 0
= E (\/mu + \/_v) F(u)Gy i (u,v)
224/0? o;! s 971 }
< SO+ 5 =B {IVA@ 0V @) - 240) )

Ags? 52¢25B </ ) >1/2
< s(t A°dP(A .
< gt s oo (4)

Thus we obtain

E{BS(f(u)_f(v))} _ (Ps(]-) S €2A082 ((105(0) + (AO 4 0_1)628B_CA0/2)-



Since, by definition, ¢(0) = 1, averaging first with respect to u and then with respect to v and using
the Iensen inequality, we get (2.6). Lemma 1 is proven.

To apply this result to f = N(R;2) and u = (€W, ... £®)) € RNP we have to check the condition
(2.4). We write

L] 0f
N " agz(ﬂ)

2 . .
SR =D IRV IEAUNIEICRE TN

VRN

< X jig'(sﬂ)jj><jjg'(su)jk><Jk> (2.7)

= 8I+8II.

To estimate the r.h.s. we use the following proposition:

Proposition 2 Consider the matrices A : RN — RN, BY) : R? - RN and C : RP — RP of the
form

A = (3dis), B = (g ) - s,

(2.8)
C = <<g'<su) S (S)) — <g'<sy>>)>.
Then .
1AV < (3f22>1/2’ 1B < |IA*I|1/2<|g”f)1/2<3f4>1/4’ el < w, (2.9)

where the matrices As, A, are defined by (2.2).

We prove this proposition in the next section.
Denoting A} ; = (J;Jjg'(S,)) and using (2.9), we obtain

1 3
I= 53 S« 440, (0) £ (D L a™(5.)).
Similarly, taking f = 1 in the definition (2.9) of B, we get

2
L (). (3) B+ B (3, (3)) < AA)

=73 < S ()

Proposition 3

S (80) < oy 3 (609, 609)

Since ¢” is a bounded function, by using this proposition (see the next section for the proof), one can
easily check the condition (2.4) for the terms I and I1.

Thus we have proved the first line of (2.6). Now by using the standard Chebyshev inequality we
get (1.20). The other inequalities in (1.20) can be proven similarly.

To prove Theorem 2 we need to make some preliminary work.
Denote

d=q(R—¢q)Y, U=d+z—(R—q) % (2.10)



Lemma 2 For any 0 < e < 1 there exists a constant C. such that uniformly in N

Ce Ce
|E{<R12>}—q|sN1_ea E{{R10} = Bl < e (2.11)

IB{((S,)2} — d| < B{lg"(S,) + a(5,))) ~ U] < 1o

Nl €’
Remark 3 Here and below we mean that all our inequalities are valid for N > Ng with some N, p-

independent Ny.

For the proof of this lemma see Section 3.
Using this lemma and inequality (1.21), we get

B{{"|} < 20"T(n). (2.12)
Besides, using inequalities (1.16) one can get easily:
E{(T1'5)} < C"I'(n), E{(I7")} < C"L'(n). (2.13)
Then, since Ry 9 — ¢ = N71/2(T1,2 + Ty + T5 + G), we obtain

C"T'(n)

Y (2.14)

E{(|R12 —q/")} <

Besides, on the basis of (1.17) and Lemma 2, we have

C

B{l(Ry —dP) < 5 BUUDY < 50 B{U(Ry ~ B <

~ (2.15)

¢
N
Here and below we denote . B

U =U,—-U.
From this inequality, using the bound

Byl U] < N7H(TL )AL

and inequalities (2.1) and (2.3), we obtain for any r > 2

(2.16)

p{(ky -} < S B{aon} <S BB - RN < S

Following the method of [T5], we introduce the Hamiltonian

> 9(S,, + IV N2) 4\ Jd(1 - tyuy o

1-1¢ o Z .9 Z,._ _

where u is a normally distributed random variable, independent of € (#) and h and S, =N —1/2(¢W) J7)
(with J= = (0, Ja, ..., Jny) do not depend on fi“)

Denote (...); the Gibbs averaging corresponding to H; (or n replicas of H;), and for any fg“)—
independent function defined of RV*" define

—vi(f). (2.18)

si=J. (2.19)



Proposition 4 There exists a constant C such that for any integer n
v (s3)| < C"I'(n). (2.20)

For the proof of this proposition see the next section.

Let us compute v;(f). Differentiating and then integrating by parts with respect to fg“ ) and u,
similarly to [T4] we get

AP = 5w - Gt
+ ; vi(fsisp(R o nzn:ut (fsi8na1( Rl 1 —d) (2.21)
<t =1
+@w(fsnﬂsn+2<fz;ﬂ,n” —d)).
Here
Ry = %ZQI(S’;(Z))QI(SJ(”)’ 0 = %Z LgAST0Y), U =0 —U
Ju J

with U, d defined by (2.10) and S, ® denoting the Ith replica of S, (the definition of S,, was given
after formula (2.17)).

Since the Hamiltonian (2.17) has the form (1.15), the inequalities (1.16) and (1.17) for this Hamil-
tonian are also valid. Therefore the estimate (2.14)- (2.16) are fulfilled and so, using the Schwartz
inequality and (2.15), we get

i (f) = vo(f)] <CmaXV YfPN2, (2.22)

Using the same formula to compute the second derivative of v4(f) with respect to ¢, we obtain the
expression in each term of which we have as a multipliers (R ; — d)(f%ll’l/l —d) or (Ryy — d)U,, or
U,U;,. Using the Holder inequality with p = (1 — €)1, ¢ = ¢ ', and then (2.16) with r = 2(1 — ¢)~?
we obtain for any 0 < e < 1:

w1 (F) = vo(F) = (] < Comaxyw*(1F[1/6)]s1 |/ N1 0.23)
< Comax,vf(|f /) (1[N,
To compute the averages of the type (Rl,m we use another tool. Denote Dl(t) = ﬁﬁ. One can
~ 1
see easily that, e.g., E{(R12)} can be represented in the form
; (1" DYG(SI)G(5)) -
B{(f 2} = B e L
(G(S17)G(57))-
where

G(S) = eI (2.24)

and the symbol (...)_ means the Gibbs averaging, corresponding to the Hamiltonian (1.15) in which
g(S1) is replaced by 0.
Let us again consider a standard Gaussian variable u and introduce a function

(G 4) — 1 o @2 /2R—q+e)(1-1) 3 wSa(l—1) + '
G (S, u) \/(1—t)(R—q+e)/ AR+ D G(VES + uyfq(1 — t) + z)da. (2.25)

8



We have G (S, u) = G(S) and

1
GO(S,u) = W/eﬁﬂ(}zqﬁ)g(u\@Jr z)da

independent of S. Below we denote

Go(u) = GO(S,u) = (2.26)

/—_q+e/_x2/2Rq+€ G(uy/q + z)dz

We remark, that the definition (2.25) becomes more natural, if we introduce it through the Fourier
transform G(\) of G(S5):

GO(S, ) \/%/G exp{ —iA(S\/I_f—i-U\/q(l —t)) - %(R—q—i—e))?}. (2.27)

Now for any fi —independent function f : RV*" — R and some polynomial P(z1,...,z,) consider
the operator P(t) = P(Dit), vers Dgt))

. _ L JUFPOGOST ). GOS u)
Py = B (GO(ED ). GO (ST ) |

_ E{<fp(t)G(t)(5()U) (s ),u)> }
GO(SW w)..a0( ™ v L)’

(2.28)

where (...)(t) means the Gibbs averaging corresponding to the n replicas of the Hamiltonian (1.15) in

which g(Sy)) is substituted by — log G’(t)(Sy),u). According to the result of [1], this function is also
concave with respect to S7 and so inequalities (2.14) and (2.15) for it are also valid.
We remark here that due to the definition G® (2.27) the operator P(*) has a natural form:

POGOSD 0.0 ™ 4y = : \/217) / GO .. COWP(=iM, ..., —idn)
exp{— ’LZ)\IS —ZUZA“/ 1—1) —%(R—q))?}.
(2.29)
So for t = 0 it is well defined:
POGOSD w). O™ w| = P2 2 G (21).Colwn)
=0 dzy dry T1=..=Tn=u

Let us compute the derivative with respect to ¢ of <pt ( fPr).

d 1 n n (n
L) = LS el - BYDP)PO) - §<p§ D (Bustnsn — B PY)
n
+> %gn)( J(Ryp — Q)D( ) ”Z () J(Ripg1 — q)th)DﬁfilP(”)
<t
n(n+1
+%w£"“)<f<Rn+1,n+2 - q)Df,LDéizﬂ ).

(2.30)
This formula is obtained by differentiation with respect to ¢ and then integration by parts with respect

to 51(1) and u in the expressions (2.27) and (2.29).
Proposition 5 For any polynomial P(\q,...\,)
e (PO < C. (2:31)

where the constant C' depends on n and on the polynomial P(x1, ..., Zy).



As it was mentioned above the inequalities (1.16) and (1.17) for (...)(; are also valid. Therefore
the estimate (2.14), and (2.16) are fulfilled and so, using the Schwartz inequality, Proposition 5 and
(2.15), we obtain:

o (TP = (7 (FPO)] < Cmaxiy (| f1)N T2 (2.32)

Using the same formula to compute the second derivative of <pt ( fPy;) with respect to ¢, we obtain the
expression in each term of which we have (R, —q)(Ry, ;; —q) or (Riy —q)(Ri, 1, — R) or (R, 1, — R)%.
Using the Holder inequality with p = (1 — €)™, ¢ = ¢!, and then (2.16) with 7 = 2(1 —¢) !, we
obtain for any 0 <e <1

oM (FPW) — M (FPO) — dolm (ppD)))

IN

C max; @ (| f|//€(PD) /e ) N—1+¢
Cemaxy f *(|f[2/9) @i * (PHON-He (2.33)
< Clmax, ) 2(|f[2/€)N~e,

IN

The last inequality here follows from Proposition5.

Proof of Theorem 2
We prove Theorem 2 in 3 steps which are Lemma 3, 4 and 5.

Lemma 3 Consider an expression of the form T{fQP where P is some product of the terms T; j (with
Tij #Ti2 1,7 <m), T; and 4. Then for any 0 < e < %

B(T},P) = (k — 1) A, B(T}5?P) + O(N~V/20+9) 4 O(% —a), (2.34)
where .
- 0
A= g (2.35)
with
bo=(R—q)* co=0q "E{(9(w)’}, go(u)=1logGo(u), (2.36)

where Go(u) was defined in (2.26).

Lemma 4 Consider an expression of the form TFP where P is some product of the terms T; with
1<i<m andq". Thenforany0<e<%

E(TFPY = (k — 1)B,E(TF-2P) + O(N~/2(1+9) 4 0(% —a), (2.37)

where B, is some absolute constant which does not depend on P, k, m and N and which is an algebraic
function of the coefficients by, co and

b = E{(5*)0(s)§} = q¢(R —q)

e1 = B{(D\" - D)D" DD) )} = ¢ 2 E{gll(95)*}

ez = B{{(D\" = D) (D{")?DY") )} = ¢ 2E{ (g + 209b) b} (2.38)
¢s = B{{(D")? — (D)) (D)2) )} = 4 2B{(g5” + g8 g + 2(g8))? + 498 (90))}

cr = B{(D DY DPDY) )} = ¢ 2E{(gh)*}.

Lemma 5 For any 0 < e < %
B{¢*) = (k = )C.B(G* 2) + O(N 2049) 4 O3 — a). (2.39)

where Cy is some absolute constant which does not depend on N, k and which is an algebraic function
of the coefficients by, b1, cy,..., c4

10



One can see easily that the statement of Theorem 2 follows from these lemmas by induction. So our
goal is to prove the lemmas.

Proof of Lemma 3.
Let us remark that (7} 2 P) does not change, if we substitute all the multipliers here by the following
expressions:

Ty — N72(J0 = g®)y (g — gty

((
((
T, — N71/2((J(l) _J(k'l))’J(kl))

: (2.40)
(IO = = 0), = 0) 4 N=12 (5 — s, )
g — N7Y2((J®) gka)y — Ng)
((

where indexes k, k' ki, k!, ko, kl, > m are different for each term in the product and we have used
notations of formulas (2.17) and (2.19). We denote the last term in i-th expression by N—1/2f;(s).
Using the symmetry of the Hamiltonian and the above representation, we can write

N

BUTHPY = NTPB{( S0 - P - T P

i=1
= VNui((s1 — {51))(s2 — (s2))P")
= VNui((s1 — sp)(s9 — sp) P7)
+ Z vi((s1— sk)(s2 — sp) fi(s)P7) + O(N /%)

)

= I+1I1+O(N?),

(2.41)

where P~ denotes the product only of such terms of (2.40) which does not contain s; and Isi_ means the
product of the same terms except the i-th one. The term O(N_l/g) appears because of the products
which contain more than 1 term f;(s). Applying twice formula (2.22) to the term IT, we get

T = Zuo((sl — s1) (52 — sw) fi())wo(P7) + O(N~1/2),

where we used that the Hamiltonian which corresponds n replicas of Hy (see (2.17)) gives us the Gibbs
averages factorised with respect to s; (see (2.17)). One can get easily that, if f;(s) does not contain
both s; and ss, then

vo((s1 — sk)(s2 — sw) fi(s)) = 0.
So, since both s; and s are contained only in fo,... fi, which correspond to Tj 2, we obtain

k
IT = S wp((s1— sk)(s2 — sw) (51— sk,) (s2 — s))wo(P) + O(NTH?)
i=2 ' (2.42)
= (k—1)bovi(P;) + O(N1/2).
with by defined by (2.36). Here we used (2.22) to replace vo(P;) by vi(P;"). Then, using (2.40) and

the bounds (2.12), (2.13) we can substitute in (2.42) P; by T{;P.
Now let us analyze the term I of (2.41) with formula (2.23). It is evident that

vo((s1 — sk)(s2 — sp)) =0
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and so the term vq in the Lh.s. of (2.23) disappears. Calculating 1), by formula (2.21), we get

I = \/ﬁzn: VO((SI — Sk)(SQ — sk’)slsl’)’/o((él_’l, _ d)ﬁ*) + O(N71/2+6)’
<t

where we choose € < % All the rest terms in (2.21) disappear because
1/0((81 — Sk)(SQ — sk:)slsl/) = 60(5171551’2 + (5;7k5117k/ - 6l,k5y’2 — (5;71451171).
So, we get
I = boVNw((Ryy— Ry — Ry + Ry ) P7) + O(N - 1/2), (2.43)

Now our goal is to substitute vg(...) in the r.h.s. of (2.43) by v1(...). To this end we apply formula

(2.21) to the function f = f1fy with
fi=VN(Riy— Ry — Ry + Ry ), fo=P

To estimate the the r.h.s. of (2.21) we use the Holder inequality of the form

e frfafsfOl < w/PH AP o P2 flP2) - P flP0) - P ),
1 1 1 1 (2.44)
— =+ —+ =1
b1 b2 PpP3 P4
for fi and f, defined above and f3 = s;sp, fa = Rjp —dor fi = Ul_ and p; = 2, po = p3 = 4(1 +€) /e,
ps = 2(1 + €). Then, according to (2.20)

pe A 109/ <

€-

According to (2.12) and (2.13),
y§/4(1+6)(f;1(1+6)/6) <C

€3

and according to (2.16),
th/2(1+€) (ff(lﬂ)) < C.N-V21+e),

Thus, we derive from (2.44)

ViDI < CNTPAF 2 2). (2.45)
But, using the Schwartz inequality and (2.9),(2.3), we obtain
2
Pt = {0 - WENEE) - WE0) |
(2.46)

= B{w X } < B{llcIPy <G,
where the matrix C was defined by (2.8)). Thus we derive from (2.43)

I = boVNE{((Ryy— Ry — By + Rip) P} + O(N-1/2H), (2.47)

To substitute here Rl_l, by Rl,l' we write

E{((R1 9 — R1 & — Roj + Rpp )P )1}

{ u2<§: Sw>ﬂg%8f”—-@%5ﬁﬁ)ﬁ‘>l}
o

{ 1/2< S (57 D) — (g (SN (S7P) — <g’(5,7)))15_>1} (2.48)
m

+B{N (g5, - <sg"(su>>1>(g'<sﬂ<2>>—<g'(sﬂ—)>>ﬁ>1}
(NS a5 ’)—<sg"(s,:>>1><g'<s,:<”>—<g’(s,:>>>z5-> Lo
i



Here the terms of the second and higher orders with respect to N_1/2§§“) give us O(N~'/?). But due
to the Schwartz inequality we have

{ <Z§ (519" (7)) = (59" (S;)1)(d' (5, 2)) — <g'(s,;)))15—>1}
< E1/2{ Z< (s9"(S, N1)(sg"(S,) — (sg”(Sy))1)>1
w,v
(s - <9’<S,:>>>(g'<s;‘”) - <g'(s;>>>>1}E”2{<”5 ) o

p
= BN S Pe6C, | < NTREYAIPYEY I ),
pv=1

where the matrix C is defined by (2.8) and

v = ((s9(8) = (50" (S, 1) (59" (S,) = (59" (5, ) )
By using (1.17) one can prove that [|C'|| < C|[A|| (see the proof of Proposition 2 in the next section).
Then (2.48), (2.49) combined with (2.9), (2.3) and (2.13) imply that we can substitute 12, ;, by R,y in

(2.47).
Hence, we get

VNvo((Ria — Ry — Rog + Rp ) P)
= VNE{{(R12 — Rip — Roj + R )P )1} + O(N~1/2049) (2.50)
:III+O( 71/2(1*}'6))‘

To analyze 111 we use again the symmetry of (1.15) and notations of (2.28) to write

1 2 / / / / ! PD—
I = \/—N;E{«g (S) =g (SENG(SD) =g (S P7)}

= ZVNE{((S) = g (5%)(g'(5%) — g (s1)) P}
= ZVNey (D" - DYDY - D)) ).

Now, applying formula (2.33), we can write

_m_\/_ N (DY = DYDY — DINYDODI) o (Riw — ) P~) + O(N~V/2+e). (2.51)
<l

All the rest terms in (2.30) disappear because

0o((D — DYDY — D)) =0, (D — D) DL — DO (D)2) = 0.

0o((D” — D;EO))(Déo) - Dl(g(/]))Dz(U)Dz(fU)) = co(01,100 2 + 01,0y iy — 01 k012 — S 01 1),
with ¢ defined in (2.36). Besides, by using (2.32) one can get easily that

@o((R12 — Rijr — Rojg + Ry )P7) = p1((Ri2 — Rig — Ray + Ry ) P7) + O(N™/2).
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By using the representation (2.40), (2.46) and (2.13) one can also substitute P~ by le’glP in (2.47).
Hence, we get from (2.51) that

%\/NE{((RLQ — Rip — Ry + Ry ) P)}
= coVNE{{(R12 — Rip — Rog + Ry )P7)} + O(N—1/2+¢) (2.52)
= cE{(Tf,P)} + O(N~Y/2F),

Now, on the basis of (2.40), (2.41), (2.42), (2.43), (2.50) and (2.52), we get (2.34). Lemma 3 is proven.

Proof of Lemma 4

Like in the proof of Lemma 2 we use representation (2.40) for all terms and change the numbers of
replicas to have for the first 7} the numbers 1, 2,3 and for the i-th T} — (1, k;, k). Using the symmetry
of the problem, we write ( similarly to (2.41)):

E{TFP} = +/Nui((s1 —s2)s3P")
+> " vi(s1 = s2)ss(s1 — sk,)sp fils) Py ) + O(N™'2) (2.53)

i

= I+1I+O(N?),

where P~ means the product only of such terms of (2.40) which does not contain s; and 15[ means

the product of the same terms except the i-th one. By the same way as in Lemma 3, we get
II = (k= 1)b E{(TF2P)} + O(N~'/?), (2.54)

where b; is defined by (2.38). Using formula (2.23) for 0 < € <  we obtain

I = VN [%m((U —07)P) + bovo (BT — Ry P)

+b1ZV0 R )15 ) —nbluo((]él_’wr1 Ry n+1) )| + o1/t
- L (2.55)
— 2()1\/_V0((U1 _U2 ) 7)+(b(]—2b1)\/NV0((R1_’3_R2_’3)P*)

n
+b1 Y VN ((Ryy = Ry = Ry + By ) P7) + O(NT1249),
where we used that . . . . . .
vo((Ry 53— Ry3)P™) = ro((Ry 1 — Ro ) P7),

because P~ does not contains both the third and the (n+1)th replica. Besides, on the basis of (2.52),
applied to the Hamiltonian H (see (2.17)), one can conclude that

bO\/NVU((Rl_,l RQZ R+ R5,00)P7) = VN (R RQ_J—R£n+1+R2_’n+1)]5’)+O(N*1/2+6)

Let us rewrite all the terms in P~ as N_I/Q(J_(i),J_(j)) =T, +1T; +T; + N=Y2((J 7)o, {J )o)

(4,5 <n), where T;;, T, are defined by (1.10) if we replace there J@ by J-@. Then we obtain

\/NVO((R_ — Ry, — Ry, + R2_n+1)P_)
= VO((T Ty, =T + T2_n+1) 7) = 015, Axo (T ) PPT) + O(N71/2+6) (2.56)
Suk A B{(T{ 2 P)} + O(N~1/2%e),
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We recall that k; is the number of replica which appears because of the substitution (2.40) of ith
Ty in our product by N_l/g((J(l) — J(kg)),J(ki)). Here we have used Lemma 3, which imply that
for any product P (defined in this lemma) which doe not contain T} ; E{(T;;P)} = O(N—'/?*) and
E{(T?;P)} = A, E{(P)} + O(N~'/*%¢). To write the last equality in (2.56) we similarly to Lemma 3

use the representation (2.40), formula (2.22) and the bounds (2.13) and (2.14).
Thus, we obtain from (2.55)-(2.56)

I = 200VNE{{({U —U;)P o} + (bo — 261)\/NE{<(R1_,3 - R2_,3))0}
+(k — 1)byby *ALE{(TF2P)} + O(N~1/2+2),

Then, repeating corresponding conclusions of Lemma 3, one can get the representation

|2

I = 20VNei (D)2 = (D)) Pr)
+(bo — 2b1)VNeg1 (D} — DYY)D{Y o)
+(k — 1)biby "ALE{(TF2P)} + O(N~1/2+e),
Applying formula (2.30) to the first term here, we get
VNe1((D{V)? — (D)) Pm) =
VN@o (D)2 — (DP)2)(D)2) g (Ra — R)P)
+VNS eo((D")? — (DY)?)D
=3

o
=
)
—
(=)
N
~—
BS)
o
—~
—~
2y
—
~
|
=)
N
~
~—
el
\/l

—nv/No (D)2 = (DI DODE) oo (Ring1 = Rons1) P7)

n
= C3\/N<P0((R1,1 —R)P™)+ Czﬁz wo((R1; — Ray — Ript1 + Rijpy1)P7)
=3

—QCQW(,O(]((RLl — R)Pf)

Here we have used that

2o((D)2 — (D2yD D)) = 0, {1,y n{1,2} = ¢
eo((D)2 — (D)) D" D)
= —o((D)2 — (DD DY) = ¢y, (1 >3)
(0 0) 2)’D§0)’D§0)) -0
)
(
2

(2.57)

(2.58)

(2.59)

Similarly to (2.56) \/NSOO((RI,Z —Ryy — Rip+1 + Rl,n+1)]3_) — 5l,kiA*E{<T1k72P)} + O(N_1/2+E).

Thus we get from (2.59)

VN (D)2 — (DS)2) ) = (k — 1) AE{(T} 2P)}

+c3VNo((R11 — R)P™) — 2coV/No((Ry 3 — Ra3)P7).

15
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By the same way, applying formula (2.30) to wl((Dil) — Dél))Dél)]S_), we get

VNg (D" - D)D) )
= e2VNeo(Riy = R)P) + e 3 VNeo(Ruy = Ba)P)
1>3
_nC1\/N<P0((R1,n+1 — R27n+1)ﬁ—) + O(N_1/2+€) (2.61)
= c2VNpo((B11 = B)P™) = 21V Nepo (Ry — Ro) P7)
+e3 Y VN@o((Riy — Roy = Rungi + Ropy1) P7) + O(N7/2H)

1>3

But similarly to (2.56) the last sum here is (k — 1) A, E{(T¥2P)} + O(N~1/2%¢). Thus, using (2.58),
(2.60) and (2.61), we obtain

Ni = "VNE{(((Ri1 - R)P)} + o E{TfP)

(2.62)
(kb — 1) A0l B{TE 2 + O(N—V/2+e),

where agl),agl),agl) are some algebraic combinations of by, by, cg,..., ¢4 defined by (2.38). Here,

similarly to Lemma 3, we replaced ¢q(...) by E{(...)} and P~ by TF~'P. Combining with (2.53),
(2.54), we get finally

E{TtP} = ad"VNE{((Ri1 — R)P)} + aal) B{T} P}

(2.63)
+(k—1)(b1 + OzA*agl))E{<le*2p)} + O(N—1/2+),

Now we are faced with a problem to compute E{((R;; — R)P~)}v/N. By using the above proce-
dure, we get

VNE{{(Ri1 — R)TF'P)} = aal)VNE{{(Ri1 — R)T}™'P)} + aal’ E{T} P}

, (2.64)
(k= 1)(2by + aal?)B{TF 2P} + O(N~V/2+e),

(2) (2)

where a;”,..., a3’ are some algebraic combinations of by, b1, co,..., ¢4 defined by (2.38). Hence,
we have the system of two equations with respect to E{TFP} and E{((Ri1 — R)TF~'P)}v/N. This
system gives us

E{TEP} = (k— )B.E{TE 2P}, B{((Ri,1 — Ron)TF " P)IVN = (k — 1) B,E{TI 2P}VN (2.65)

with some B, and B,, depending only on the coefficients by, by, cq,. .., ¢4 defined by (2.38).

Proof of Lemma 5
Similarly to Lemmas 3 and 4 we use the representation (2.40) to write

E{¢*} = VNuvi((s152—q)P7)
k
+3 vi((s152 — q)*P) + O(N™'/?) (2.66)
=2
= T+ IT+O(N1/?),

where

k
pP= H Nl/Q(RQ_l—l,ﬂ —q)
1=2
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By the same way as in Lemmas 3 and 4 we obtain
IT = (k—1)¢*E{¢* 2} + O(N~1/?) (2.67)

Calculating I with (2.22), and then substituting ]N%l_’l, by Rl’l/ and vy by v (see the proof of Lemma 3
for details), we get

I = \/N[QQ S Vi((Ryy — Ryt — Ry pyo + Rug1ny2) P7)
2

~(2b — ") Y vil(Brz = Rio)P7) = T ni((Bag — Ru)P) (2.68)
>3 >3

+(bo — 2b1)v1 (Ri2 — d)P ) + 2byvy ((Ry1 — U)P)} + O(N~V/7ey,

Here we have used that since P does not contain replicas 1 and 2 we can replace n+ 1,n+ 2 — 1,2
Now we apply formula (2.33) using the following relations:

E{(TyP)} = A don-10r 2 B{d* 2} (1 <),
k=2

E{{TP)} = B.E{¢"?},
VNE{{(Ri, — Ri))P)} = —B.B{{"?}.

vl

These relations follows from Lemmas 3, 4.

N1 = o B{(Ri - RN 269
+af) B{g*} + (k = 1)af B{¢" 2} + O(N - 1/2+¢),

So we have got the equation

B{¢*} = (k—1)(¢* +adl))E{§"?)

(2.70)
+aa53)E{<(R1,1 - R)q'k_2)}\/ﬁ + aag?’)E{q'k} + O(N—1/2+e)’

(3) 3)

where ay”, ..., a3’ are some algebraic combinations of by, by, cg,. .., ¢4 defined by (2.38).
By the same way, studying \/]VE{((RM — R))¢*'}, we get the equation
VNE{((Riq = R)@* '} = (k—1)(@ + aay”) E{¢")
+aal’) B{(Ri,1 = R)¢* VN (2.71)
+aal) E{¢"} + O(N~1/2+),

(4) (4)

where ay 7, ..., a3’ are some algebraic combinations of by, b1, co,..., c4, defined by (2.38).
Considering (2.70) and (2.71) as a system of equations with respect to E{¢*} and
VNE{{(R11 — R))¢"*"'}, we finish the proof of Lemma 5.

3 Auxiliary results

Proof of Proposition 2 Consider any x,y € RY and write

) ) . . 2\1/2
(ADx,y) = (13T 3)f) < (T (y)) 2027 < gy,
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where we have used inequality (1.16). Similarly, using inequalities (1.16) and (1.17), for any x €
RP.y ¢ R?
1/2

Bxy) = (T 66 - 60

"
SFNVA|AL2 (g 12) /2
o BOYIANEG Y

z

To prove the inequality for the matrix C let us take y € R? and apply the inequality (1.17) to the
function f =37, ¢'(S,)yu. Then

Zcu,uyuyll = <(f_ <f>)2>
v
< S G (S0 (S
U5tV

1 ~
< AN (SOP) P,

where the matrix A, is defined by (2.2). Relations (2.9) follow.

Proof of Proposition 3
From (1.18) one can easily derive that

(¢'(8))? < C1 — Cag(8).

<—%Zg(5u)> <C

—H(r —TZQ )+ 2(J,J).

Let (...)r be a corresponding Gibbs average. One can see easily that

1
(3 Zas0)).
is a decreasing function of 7. Thus

(-FXLos) = o) <60) = (-5 La(s).
C

Thus it is enough to prove that

Define the Hamiltonian

C

< N(Z<SQ> N? D (g g,
Proof of Lemma 2
We prove first that

C C
vi(R12) — vo(Ri2)| < —=, |w(U1) — vo(U7)| < N
[ N, (3.1)
lpt(R1,2) — ¢o(Ri2)] < i [t (Ri1) — wo(Ra1)] < ik



respectively. Then we use formula (2.21) for f = V/NR; 2 and f = v/NU;, but we write it in the form:

A = 5wl = NSO~ UN) + 3wl — (dsise (R = )

=l I<v
-n Z v ((f — <f>t)818"+1(él_,n+1 —dn)) (3.2)
=1
S~ (Dsmirsmsalliz s — d)).

Using the Schwartz inequality and (1.17), due to the terms v4((f — (f):)?) we obtain the first line of
(3.1). But then, on the basis of (3.1) one can derive from (3.2) that the first line of (3.1) is valid even
if we replace CN~/2 by CN~!. Now similarly to (2.16) one can conclude that for any r > 2

B{{\Ry —dy|'y < 5 B0~ UnT)) < (3.3)

Similarly, using (2.30) for f = \/NRLQ and f = \/]VRM with gy = ¢o(s152), Ry = ¢o(s?), we prove
first the second line of (3.1). Then, by the same way as above, we get

(3.4)

=S

C

B{|Riy —an))} < 5 B{(1Ruu = Ry[*)} <
Now we remark that since it was proved in [S-T2], that the system (1.11) has a unique solution, to
prove (2.11) it is enough to show that our ¢y, Ry satisfy this system with the error terms O(N~1+¢)
and dy, Uy satisfy relations (2.10) with the same error. Now, on the basis of (3.3) and (3.4) it can
be shown easily by formulas (2.21), (2.23) with f(s) = s1s2 and f(s) = s? and by formulas (2.30) and
(2.33) with f = D1 Dy and f = D?.
Proof of Proposition J
Let us denote

82
#s) = log [ AT exp{~HUJ ")} = duls) + us\Jad(1 1) = 2z = (1 = (U = )

[ s"e?)ds (3.5)
= (") =(s")gp = Teds
According to the results [1], ¢;(s) is a concave function. Besides, there exists 6 > 0 such that
(== -d)> (= (U -d) = (R-q) " >
Then, according to the results [1],
(s = {s)gl")p < 972" (n). (3.6)

So, to prove Proposition 4 it is enough to estimate (s)g.
Denote s* the point of maximum of the function ¢(s). Then it follows from representation (3.5)

of the function ¢(s) that
5 < 6 1 |gh(0) + uy (1 — )]
On the other hand, by [1]

(s =s"o <070 = |{shg| <0711+ [¢(0) +/d(1 — t)ul)

Now, since

400 = 3 8 1 (57)
t\YV) = : \/ﬁg w0

19



and (...)¢ does not depend on f%“), we have
n/2
E{(s)"} < 2" "I'(n)(d" + E{ (NS (4'(S,))2 .
(e 2{(v Zwsi) )

Then using Proposition 3, we obtain the statement of Proposition 4.

Proof of Proposition § ‘
According to the representation (2.29), P; is some polynomial of the derivatives 38—;@ log Gt(Sy ),u)
(k =1,..,6, 7 = 1,...,n). But under condition (1.18) for k > 2 these derivatives are uniformly

bounded functions. So we need only to prove that

0 @ )"
E — log G4(S7",u) < C(k). (3.7)
85 (t)
Similarly to the proof of Proposition 4 by (1.17) and (1.18) inequality (3.7) can be derived from the
inequality
0 @ )\
E — log G¢(S7",u) < C(k). (3.8)
(95' (t)

But similarly to the proof of Proposition 3, since

9 G ) )
<%10th(51 7“)) < C1 — Cylog Gi(Sy, ),

one can get that

. 2 .
<<i log Gt(siﬂ,u)) > <C - 02< log Gt(s§ﬂ),u)> .
98 (1) (0)

p

Now, since (...)( does not depend on {f%") =1

(3.8) follows immediately.
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