Generalization and learning error for non linear perceptron

M.Shcherbina? B.Tirozzi'

Abstract

A rigouros derivation of the asymptotic behaviour of learning and prediction error for the non
linear perceptron is presented. The saddle-point method is used for evaluating these quantities.

1 Introduction

Neural networks (NN) have shown to be very useful in many tasks of data analysis. Almost any problem
of modelling a set of data {(x("),y®) ;])/[:1 has been successfully solved by back propagation neural
networks as well as predicting new data. For example, if we have the stochastic process z(t), we can
consider as an input vector x = z(t — 1), z(t — 2),...,2(t —n) and as an output y = z(¢) - the value of
the process at the time ¢ (here the time ¢ plays the role of ;). This kind of NN is widely used and applied
in many fields like meteorology (see, e.g.[1]), geology [2], economy [3], etc.

The back propagation for two layers perceptron is an algorithm inspired to the adaptation process
of the brain for solving particular tasks. It has been noticed since a long time that the synaptic weights
of the brain change during the growth of humans. Each group of synaptic weights of neurons changes
in such a way that an elementary task, e.g. recognition of an object situated at a certain angle in
the plain of observation, is solved. The use of sigmoid functions as input-output relationship and the
terminology of neurons, synaptic weights are coming from the analogy with real neurones. For NN used
in solving the data analysis problem (called also artificial neural networks ANN) an architecture is also
introduced. There is a first layer of n input neurons, i.e. suppose that our data are n-dimensional vectors
x( = (:vgu), ... ,m,(f)) and to each neuron 7 is associated an input data :vz(”), then the output neuron n
is connected through a synaptic weights w; with the input neuron j and it receives as a total synaptic

input the sum wixl(-“) = (x(®,w), the output of this neuron is
21 = (%M, w)),

where o(z) is a sigmoid function similar to the usual input-output function of real neurones and is of the
form

B 1

“ Ty

This simple model of neural networks is the perceptron or one layer back propagation. The learning
process is some evolution of the synaptic weights which minimize the learning error over a sequence of
input-output pairs {(x(), ()}, According to these definitions y*) is the desired output and z#) is the
output of the network. Thus it is necessary to apply a minimizing algorithm to the error H(w,X,7)

o(x)

M
Hw,%,7) =Y (W —yW)2 (1.1)
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Usually the minimization is done by means of the steepest descent or Monte-Carlo method. The minimum
of H(w,X,7) is called the learning error. Once minimization of H(w,X, ) is achieved on the (X, y) which
is called the learning set, the important question arises about the error which the ANN makes on a new
input data x™+1) presented to the network i.e. how one can estimate the probability that the output z of
the network differs from the real expected output more than a certain given ¢ or also directly estimate e.
Here ¢ is defined as the generalization error. This question has been treated in many different approaches.
Vapnik and Chervonenkis [4] give an estimate of the probability that the difference among the learning
error and generalization error is greater than a given constant §. They have obtained an exponential
decay if the number of pattern is larger than a constant called the Vapnik - Chervonenkis dimension,
But this constant is not possible to compute in general situation.

Another known approach is the one of Amari [5] who estimates the generalization error for the
perceptron and finds that it is inversely proportional to the number of patterns M. The proof of Amari
is not complete because there are some assumptions which can be verified only qualitatively. Another
original approach is the one done by Feng [6] who has got the same bound as Amari, using extreme value
theory for the perceptron of the type

z = sign((w, x)).

There are many other approaches based on bayesian formulation of probability [7]. Some interesting
estimate is also obtained by introducing the Gibbs measure, associated to the Hamiltonian (1.1). One
particular variant of this problem has been found by Solla and Levin [7], using statistical mechanics
estimates. They assume, that there is a perceptron transformation which generates the data

21 = (w0, xM)) 4 tn),

This is what is called the “teacher” rule. The vector w? is the one which generates the output y" . when
the input x(* is presented to the network and n(#) is the noise which is in the data and is represented
by a set of independent identically distributed Gaussian variables with variance 1. Suppose now that we
want to find w which best approximates w® for the collection of input-output {(x),3))}. The best
approximating w is called the “student rule”. The learning error is

M
L= B (0w, x00) — (@ x¥)) + ))2)},
p=1

where the average is taken with respect to the Gibbs measure, generated by H (the symbol (...)) and
also with respect to the distribution of x(*) and "), In the work [7] the expression of £ and of the
generalization error G has been obtained in the case of linear perceptron o(x) = x.

In the present paper we derive rigorously the asymptotic expression for the learning and generalization
errors when M — oo in the case of nonlinear perceptron, extending the result of Solla and Levin[7],
without using the assumptions made in their work.

The paper is organized as follows. In Section 2 we describe the model and the results, while in
Sections 2 and 3 there are the proofs of the main and auxiliary results respectively.

2 Model and results

Consider a bounded function o()\) (A € R) which varies from in (—1, 1) and satisfies the conditions

o'(\) >0, o(too) =+1, |o"(N)| < const, 1—]oe(N)] <20 (1A 5 o). (2.1)

- A

Let {x(“) }ﬁ/[:"il be n-dimensional independent identically distributed random vectors, whose components

(1)

, are also independent for different 7 and

BE{x®} =0, B{x".x¥)}=n B{x"|'} < const. 22)



(w) (1)

Besides, we assume that the distribution of x;"” is continuous at the point x;"’ = 0. Here and below
(...,...) means a usual scalar product in R", and |...| is a norm, corresponding to this scalar product. We
denote also by F{...} the averages over the distribution of all random parameters of the problem.

Let {n( }fy:ﬁl be independent random variables, such that

E{n(“)} =0, E{(n(#))2} =1, E{e/\|’7(“)|} < const (2.3)

with some positive A. We consider the Hamiltonian of the form

| M
Has(W:%.1) = 3 3 (o((w.x?)) — o((w,x2)) + t7(#))? (2.4)
=1
where w € R™, w® € R” - is some fixed vector and we denote X = (x(), ..., x(M))and 7 = (nM, ... ).

Consider the corresponding partition function
Zut(B%.0) = [ plow)dw exp(~BH (wi%. 7). 25
where we denote dw = [[;"; dw; and the density function p(w) supposed to be nonnegative and

/,o(w)dw < const.

We assume also, that p(w?) # 0 and p(w) has two bounded derivatives at the point w = w?.

We are interested in the behaviour of the learning error

where the symbol (...) means the Gibbs averaging with respect to the Hamiltonian H:

()= Z]\_/ll/p(w)dw(...)exp{—ﬁH(W,i,t)}.

The other subject of our interest is the generalization error which is given by ([5, 7])

Gu(t) = —In Zg;. (2.7)
Theorem 1 Under above conditions
__n -1 _np -1
E{Ly(0)} = QBZM +o(M™), E{Gm(0)} = 22M +o(M™), .3
B{La()} = 5+ 00, gy} = T+ o)

3 Proof of Main Results

We start from proof of Theorem 1 for ¢ = 0. Let us define the constants:
d? = |m‘in E{(w,x")20(2n — xV])} > 0,
w|=1

K= ‘In|1_nl E{0(|(w, x| - g)H(Zn — 1M} >o0.



Remark. Let us note, that d # 0, because for any w : |w| = 1 E{(w,x(1))2} = n and Prob {(w,x1)? =
0} = 0. Thus, Prob {(w,x(1)2 < 2n, (w,x(1))2 # 0} # 0. Similarly, from definition of d it follows that
K #0.
Take then ¢ = % and choose the finite set of points {w(®}, (i = 1,... N) which have unit norm
|lw®| =1 and
S(0,1) c uB(w®,¢),

where S(w, ) is the n-dimensional sphere of radius r, with center in w, and B(w, €) is the n-dimensional
ball of radius ¢, centered in w.
Consider the inequalities

d

1 Y .
O w D, x0)| = )00 — xW]) = K, (i=1,....N) (3.2)
p=1

N | =

Remark. Denoting ¢ = 0(|(w®,x()| — Hg(2n — |x()]), we have for any i the set of independent
bounded random variables &' whose mean values are larger than K (see (3.1)). Therefore from the

Chebyshev inequality we get that the probability to have (3.2) is larger than (1 — e~ const),

We put conditions (3.2) in the set of points w(?) in order to obtain that some weaker condition holds
uniformly in w.

Proposition 1 If inequalities (3.2) are true, then for any w : |w| =1

if:a(( ) = Yon - x0)) > Lk 3.3
Muzl |W7X 1 n—|x |_§ (-)

. 1 U .
Aij= 1 Sl (W' =) P, Aiy = B{Aig) = B{lo' (w°.x0)) PV},
p=1
~ 1M ) (3.4)
Ry =57 2 000 — xW)alal, X5 = B{X.;} = Blo@n — xOaVa ().
=1

It is easy to see, that the matrices A = {A4;;} and X = {Xj;} defined in such a way are positive
A>0I X >8I

for any distribution of x(#), satisfying (2.2). This can be derived from the relations

(Aw,w) = Y A jwiw; = E{|o’(w°,x1))2(xV), w)?} > 0,
ij=1
(Xw,w) = > X;ww; = E{0(2n — MM, w)?} > 0,
ij=1

but the values of the constants d; and Jo depend on the distribution of x (1),

Proposition 2 Denote

M =~ log min Blexp{—[o’((w!, =) (. w)?}} > 0, .
- 3.5

Az = —log min Fexp{~(x",w)*}} > 0.



Then the inequalities

A>Z1 X> 0 3.6
> 2 x> (3.5)
1 i/[: 0(2n — [x)) < 1 (3.7)
M — -2
pn=1
hold with probability more than (1 — e=M const),

Now we are ready to find the asymptotic expression of L;s. Let us take

_ 16n|wY|

L= , = min a' (N,
d 1= ot T (3.8)
Co = minflo(4n|w’|) — o(2n|w’|);  |o(—4n|w’|) — o(=2n|w°|)|}
and divide integrals in (2.6) in three parts:
+/ +/ H(w;X,7n) exp{—fFH (w;X,7) }p(w)dw
o pnroe ™ Soparcp s ™ o HOVT) XD (=B H (w5, 7)) .

=L+ 1L+ 1z

Let us estimate I and I3, assuming that inequalities (3.2), (3.6) and (3.7) hold. If M—2/5 < |w—w° < L
and |x(")| < 2n, then |(w,x®)| < 2nL and

H(w;X,0) > %ﬂimn — X)) (o ((w,x"))) — o (W, x))))?

2 M
> % Z 0(2n — |X(u)|)((w’x(u)) _ (WO’X(M)))Q (3.10)
pn=1
M 2M 2\
:Cl (X(W—WU),W—WU)Z Cl 2|W—W0|22&M1/5
2 8 8
Thus, since evidently |H (w;X,7)| < 2M, we get
|I| < e COMSEM/E (3.11)

Consider now the domain |w| > L. Let us note, that if [x()] < 2n, then |(w®,x®)| < 2n|w?|, and if
|(w, x(M)] > ‘% = 4n|w?|, then |(o((w,x®)) — o((w?,x())))| > Cy. Therefore

M
H(w;X,0) > % > 0@n = xHDa(l(w, x#) = =5) (o ((w, x#)) = o((w’,x)))*
p=1

M
> %5 b(an - o e - 4 (3.12)
p=1

c2 Y ( w d._ MC2K
> 72 _ |x(#) oy Dy s 2
> #519(2?1 |x |)9(|(|w|,x =)=

where the last inequality is due to Proposition 1. Thus, similarly to (3.11),

|I5] < e~ CONSEM, (3.13)



Now let us calculate the first integral. Since

o((w,x")) —o((w,x")) = o' ((w’, x#)) (w — w’, x(1)

0//((W0’x(u))) 0”’((((#) (W),X(“)))

+f(w—w0,x(”))2++ G (w — w0, x(#)3
with ¢(#)(w) situated between w0 and w, we have
_ M - 0 0 0 0 (M)
HM(W;X,O):T(A(W—W) w—w')+ M Z DJ, i — w;)(wj — wj)(wg —wy) + MU (w),
i,J,k=1
where
s0n _ 1§ (1) () ()
Diji =77 2.0 ((w ,xt))o ((w, x )z )l
pn=1
M
(M) _1 1 w® N2 1 Lol ( ()Y ( (1) (1) 0 S (m)y4
F(w) = 37 > (0" (wh,x1))* + 2o’ ((w?, x))o™ (¢ (w), x!1)))) (w — w, %)
p=1

e S (M) - . . 1 -
Hy (w;x,7) = §(Aw,w) + T ijzkjl Dy o Wit g + Mf(M) (w), (3.14)
Besides,
_1/2.~ . 1 L
(" + M%) = p(wO) (14~ () + 5 (S(C (), W), (3.15)

where r = %‘%{;) and S is the matrix of the second derivatives of the function p(w) divided by p(w?),

and the point ¢(w) is situated between w® and w.
Then, for |w| = VM|w — w’| < MY under the conditions (3.6) and using the simple relation
e? = 1+ z + O(2?), we obtain

= /|W|<M1/10 p(WO)[l + ﬁ(r,ﬁ) + ﬁ(s%,‘fv))]
5 (Aw. v~v>+¢iﬂ ;17 M) g+ 7O ()] (3.16)
exp{—ﬁ(A W) M1 — Z Wiy, — ﬂf (W) + O(w)l-
2 \/— e ,ykl J M

Using the bounds, valid for any matrix B, satisfying inequality B > o1

[ exp{ (B ) dw < o3
W[ > M1/10 (3.17)

/ |w|® exp{—(Bw,w)}dw < conste" 2M1/5’ (s =2,..15),
|| >M1/3

we can extend the integration in the r.h.s. of (3.16) to the whole R™. Thus, if inequalities (3.2) and (3.6)
hold, then by the rules of Gaussian integration we get

p(w®) det™1/2 A & _ np(w®) det™/2 A 1
28M (2n3)n/2 Z (1+0(37 ))_ 26M  (2nf3)n/2 (HO(M

I =

)). (3.18)



Calculating by the same way Zs, we get

det™1/2 A
(2np)n/2

Combining with (3.18), we obtain

ZM:,O(WO) (l_i_O(%))+O(efCOIlStM2/3)_i_O(efCOnStM).

n —_const m2/3 —const M
Lan=5pa7 TO )+ O(e )- (3.19)

Now denote by € the set of x(*), for which inequalities (3.2) and (3.6) hold. It is easy to see, that
Prob{Q} = E{1 — xq(X)} < e CONStM (3.20)

where xq(X) is the indicator function of the set 2. Thus, since for all X |£/| < maxyw Hy(w;X,7) < 2M
we have

IB{La(1 — xo(®)}Y < ME{(1 — xa(X))} < e~ COnst M

B{L} = B{Lmxa(®)} + B{Lm(l = xa(®)} = 5oz + 0 OB 4 0 0t 1)

To find G)r we again divide all integrals into three parts and estimate I, and I} by the same way as
n (3.10)-(3.13). To calculate I}, we again perform the change of variables w = v M (w — w’) and then
obtain

Hpri1(W;%,0) = 1(Zwv,vv) + L(AW“WV,W)
2 2M (3.22)
LR OV e e Wl ‘
+ i ijzk:_IDi,j,k,lwiijk + Hf( (W) + O(M3/2)
where )
AL = o (w0, (D)) g (MM,
Then, similarly to (3.16)-(3.18) we get
D= [ o) exp{ =5 (A WML+ o ) + (S, W)
W|<M1/3 ’ M2 oM
AM+) s & ~ ~ 15
(1 oM (A( )W,W - —,M Z D ,]k lwzw]wk - _f (W) + WO(|W| ))dW

1,,k=1

Using again estimates (3.17) we can extend integration here to the whole space and, denoting

vy _ exp{=S(Aw, 5 L) () dve

s detj/ 2 A(2nB)n/? ’
fexp{ (Av~v w) HSw, w)dw
det1/2 A (27 B)n/? ’
we get from (3.23)
det™"/2 A B & - B - S 1
=pw¥) - (MH1) (-1 (M) 4 2 -
and 1/2 .
det™ /< A B = S 1
— 0 (M) 2 _
Zy = p(w?) nB) ( Y + i +O(M3/2)). (3.25)



So we derive that if inequalities (3.2), (3.6) are true

M+1 1
G (0 2M ]Zl A )ij + o(M) (3.26)

Now, let us note, that since 4; ; — A; ; for almost all X, we have under condition (3.6), that (A~1); ; —
(A™");,;. Therefore, for these X

1
Z AL (A7) + o(37): (3.27)
i,j=1

Now, we use again the fact that inequalities (3.2) and (3.6) are true with probability more then 1 —
e~ COnSt M Thug due to the bound |Gas| < |Inexp{—28}| < const, valid for all X, we can, similarly to
(3.20)-(3.21), get from (3.24)

i BULD) (A, +o<%>
=1
b, 1= L pa (3.28)

1,j=1

To study the case t # 0 we have to add some other conditions to (3.2) and (3.6) . Let L*(M) be the
minimal positive number such that
1
1—|o(L*(M))] < —. 2
o(L* (M) < - (329

It follows from the condition (2.1), that L*(M) < const M. We choose also some M-independent number
€ > 0 such that

KC3
2 max B{0(28 — |(x, w))O(VM — [xV )} E{]nV ]} < 10t2’
w|=
where the constant K is defined in (3.1) and C5 is defined in (3.8). Such a choice is always possible
because the distribution of x(!) has no singularity at the point x() = 0. Consider the system of N
points (N; < const M?") {w)} N1 “such that [w(*)| < L*Z and

(3.30)

*

L )
B(0, =) c U B(w™), M~?).

We denote
Rw;x,7) = Y (o((w’ xM)) — o((w,x)))n (3.31)
pn=1

and assume that the following inequalities are true

M
> 0(x"| = VM)gW| < MVC, Zln <M,
pn=1 u 1
2 i/[: 0(2¢ — |(x™), wHDN))O(VM — [xW])nH | < KC3 (3.32)
M ’ =T

1

\/—MlR(W(*”;iﬁ)l <MYS. (i=1,....Ny).

Proposition 3 The probability that all inequalities (3.32) hold is more than 1 — e~ M/ const



Proposition 4 If inequalities (3.2), (3.6), (3.7) and (3.32) are fulfilled, then

inf  [H(w;X,0)+tR(w;X,7)] > const M'/°. (3.33)
(w—w0|>M=2/5
By using this proposition, it is easy to obtain that similarly to the case ¢ = 0, for our purposes it is

enough to study only the integral inside the domain |w — w°% < M ~2/5_ In this domain, using again the
variables w = v M (w — w'), we get

1, -
Hy(W;X,0) =Y + o (AW, W) + (b, W) + fur (W, ), (3.34)
A 12 (n(M+1))2
Hyp (Wi %, 1) = Y + = (Ave, W) + (b, W) + £ (w,7) + %
1 A(M+1) & = t77(M+1) ! 0 (M+1) (M+1) (M41) (M41) (335)
TanA W, W) = o (w',x ) (W, x )+ 379 (W, x ).
Here
tQJXW: (M))Q t ]zw: I(( 0 y)) (#) (#) ( )
V=252 )% b=—m ) o ((wh,xB))n s, 3.36
2 p=1 muzl

The explicit form of the functions fM)(w,7) and g™+ (w,x(M+1)) is not important for us because, if
you have the fraction of the form

1+ f(M)+ 4
(M) = + (M) + 3
1+ f(M)
and we know that f(M) — 0, as M — oo, then we can write
A 1 A 1 A
FM)=1+ ——F7+—=1+4+ — —f(M)) =14+ — —).

That is why we need not to know the exact form of f(M). In fact, we have used already this trick,
calculating G(0) in formulae (3.24)- (3.26), but there all the calculations were shown explicetely.
Therefore we get that, if inequalities (3.2), (3.6) and (3.32) hold, then
1 1 ~
t)=—Y +—((A)"'b,b M! :
La(t) = 3 + 5((A) 'b.b) +O(M ) (3.31)
/Bt2(7l(M+1))2 1
L S S T
5 =3 5 27
Taking into account, that according to Proposition 3 inequalities (3.32) hold with probability larger
than 1 — exp{— const M'/*}, and inequalities (3.2), (3.6) and (3.7) hold with probability larger than
1 — exp{— const M}, similarly to (3.20)-(3.21) we obtain the second line of (2.8). Theorem 1 is proven.

Gar(t) = — In(exp{— AMIDA=Tp A~'b) + O(M ™). (3.38)

4 Auxiliary results

Proof of Proposition 1
Due to the choice of {w(?)} for any w one can find a w(®) such that |w — w®)| < e. Thus, if [x¥)| < 2n
and |(w(®), x(W)| > 4, then

|(w, x| > |(w®,x)| — |xW||w — w?| > g — e = %
Therefore d d
0| (w, x"))| — 72 o(|(w®, x#)| - 3)



and so

M M
S 001w, x#)] — Dyan — 1x®@)) > 3 0w, x| — Dogan — ey > KX
=1 4 = 2 2

Proposition 1 is proven.

Proof of Proposition 2

The estimate for the probability of inequality (3.7) follows from the standard form of the Chebyshev
inequality for the set of bounded independent random variables 8(2n — |x(#)|), if their mean values are
larger than % But since
|x ()2 |x (1) |2 1

B0 |~ 2)} < B{O(xW] —2m) Ty < BUG Y =

we have that .

B9~ X)) = 1 - B{O(x)] ~2m)} > 1 -

n

Thus, we get easily that (3.7) holds with probability more than (1 — ¢=M const)
To prove (3.7) let us prove first that for any w: |[w| =1

>

| w

. A
Prob {(Aw,w) < 7} < e MY (4.1)

From the Chebyshev inequality we get

>

1

Prob {(Aw,w) < 22} < E{exp{M % — M(Aw,w)}}

0|

M
= e M2 T B{exp{~|o’ (W, x"))]?(x"), w)*}}}
pt1 (4.2)

= M2 (Blexp{ |0’ (w’, xW)) P (x!V, w)* )M

< o= MA/2,=MA1 _ ~MA1/2

Now denote C' = max, |o’()\)| and take the finite M-independent set of the points w(1?) such that

A1 )
116C2n2”

S(0,1) c UB(w(')

Suppose that inequalities (3.7) and (4.1) for all points w(!*) are valid. Since for any w : |w| = 1 there

exists the point w(') such that |w — w(19)| < lﬁé—lrﬂ we get

(Aw,w) = (Aw(), w1D) 1 (Aw,w) — (Aw("?), wl1D))

p=1
A1 ZM 2 (1d) (W2 <~ M 200 - 2 (1)
A A ZM () > A1
L _ > 72
>3 ~aoap 22 0@ =) 2

10



The proof for the matrix X is the same

Proof of Proposition 3

Taking A > 0 so that condition (2.3) is fulfilled and using the Chebyshev inequality, we get that

pn=1

M
Prob{ " 0(|x"| — VM)[n®| > VM} < e M B{ ] exp{20(|x")| — VM) [n®)|}}

p=1
*)‘Ml/ﬁ(l — Py —i—pME{e)“"(l)‘})M < conste MM’
Here py; = Prob {|x®)

| > \/_} and pyr < nM ! because of condition (2.2). The estimates of the

probabilities for the rest of inequalities in (3.32) are similar
Proof of Proposition 4

If |w| < Lo,

then we choose the point w(*%) such that |w — w*9)| < +7=- Then
M .
|(R(w: %, 1) — R(w");x,7]) |<2Z9|X |—\/1\_4’)|77(“)|+CZ9( B]) 3 [ =2

_ w||n(“)|
<

”
Mii

O(1x | — VM)

p=1

W) <2M'% +0(1),

where C is the upper bound for the first derivative of the function o, and we have used the first line of
(3.32). Then, using the last line of (3.32), we get for |w| < L

|R(w;X,7)| < const M'/S.

(4.3)
Since M1/6 << M'/5 we derive the statement of Proposition 4 from this inequality and estimate (3.10)
If [w| > &£, then we consider

I*
|R(w;X,7) — R(— -

] <23 0| - VADI)
M L* W = ! (44)
+ 3 (o((wex®) = o (S x)OVET — )] = 25 + B
pn=1
Because of (3.32) 2|%;| < 2MY/6. Let us estimate ¥y
M L w w
|S52] < D |(a((w,x®)) —o(%- (mﬁx(“)))lﬂl(max(“))l —8)0(VM — [xW]) )|
pn=1
. w
+2) |0(E - |(M,X(“))|))9(\/M— x|
M - L* w w (4:5)
<Y o ((wh,xW)) —o(= - (= x")|0((—, x")| = &)In™")|
2 =l w
M w
+2) 6 |(max(“))|)9(\/1\_/—’— ) ])n®| = 3 + 254
p=1
But, if |(| |,X(M))| > &, then
Wy 7+ LWy s e Wy < g+ LW Wy«



Then in both cases

o ((w,x#))) — o (= (—7.x"))| <

R
W wl

because of the definition of L* (see (3.29)). Therefore

M

1 M
Yy < M Z |77(N)| < M1/8‘
p=1

Let us take any point w such that |[w| = 1. Then there exists the poit w(*)) such that |w —w(%)| < M2,
Then, if |x(")| < v/M, one can conclude that |(w®?, xW) — (w,x(")| < M—3/2 and therefore for M large
enough (M3/2 > £71) we have |(w,x(")| > |(w(*), x(#))| — &, Thus,

0(¢ — |(w,x"))O(VM — [x))|In"] < (28 — |(w,x¥))o(VM — [x])||n].

Summing this inequalities with respect to p and using inequality (3.32), we get the estimate

u 2
aup 2 3506 — (o <) OVAT — 1) < MECE
‘W‘:l p=1
Therefore 2
MK
9%, < gtCQ. (4.6)

From (4.4)-(4.6) we get, that

L* MC3K
Rwi7) — ROS - 20 )] < 22

; + const M8,
£ |wl

Now, using inequality (4.3) proved above, we have

L*
|R(— - i; x,7)| < const M'/S,
£ |w|
Thus, we get that for |w| > L?
MC3K
R(w:;x,7m)| < .
| (W7 X7 77)| — 8t
But since from (3.12) we have that H(w,0) > MZSK, we obtain for |w| > L? that
MC3K MC3K MC3?K MC3K
H(w,0) + tR(w) > 42 — [t||R(w)| > 42 - 82 = 82 .

Proposition 4 is proven.
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