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Abstract: We estimate the critical capacity of the zero-temperature Hopfield
model by using a novel and rigorous method. The probability of having a stable
fixed point is one when o < 0.113 for a large number of neurons. This result is an
advance on all rigorous results in the literature and the relationship between the
capacity a and retrieval errors obtained here for small a coincides with replica
calculation results.

1. Introduction and Main Results

The Hopfield model is one of the most important models in the theory of spin
glasses and neural networks [H], [M-P-V]. It has been intensively investigated
in the past few years (see e.g. book [M-P-V] and references therein). One of
the main problems is the critical capacity which has been studied by means
of the replica trick [A], [A-G-S]. Here the value a. = 0.138... (coinciding also
with numerical experiments) was found. But this result is nonrigorous from the
mathematical point of view. There are few rigorous approaches in the literature
to estimate the critical capacity of the Hopfield model [N], [L], [T]. Here we
introduce a novel approach based upon analysis of the Fourier transform of the
joint distribution of the effective fields. It enables us to obtain a new bound
for the critical capacity and also allows us to prove rigorously, for small «, the
results obtained in terms of the extreme value theory [F-T].
Consider the sequential dynamics of the Hopfield model in the form

N

ot +1) =sign{ Y Jyjo;(t)}, (1.1)

i=Lj#k
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where, as usually,
) L »
ij:NZQ‘fZ, N as N — oo, (1.2)
p=1
and & (j =1,...,N), (u=1,...,p+1) are i.i.d. random variables assuming

values =1 with probability % This dynamical system is determined by the energy
function

N
1 B
H(O’) = —EZijUjO'k, (13)
i#h
where we denote o = (01,...,0n). It is easily seen that the function H(o)

does not increase in the process of evolution. Thus, the dynamics of the model
depends on the ”energy landscape” of the function (o) and the local minima
of the function are the fixed points of dynamics (1.1). Newman [N] was the first,
who proved, that for @ < 0.056., an_"energy barrier” exists with probability
1 around every point o = &" = (&,..., &), i.e. there exist some positive
numbers 0 and &, such that for any o, belonging to

2 = {o : |lo - €"|[2 = 20N]},
the following inequality holds
H(o) — H(E") > eN

(here and below the norm ||...|| corresponds to the usual scalar product (..., ...)
in R™). In other words, it means that
min H(o) — H(E*) > >N. (1.4)
ocy

This result was improved by Loukianova [L], who proved the existence of the
“energy barriers” for a < 0.071 and then by Talagrand [T]. One can show, that
if such a ”barrier” exists, then inside each open ball

Bl = {o: |lo — €[ < 200N]}

there exists a point of local minimum of the function # (o), which, as it was
mentioned above, is the fixed point of dynamics (1.1).

Thus, it is clear that the point o* in which H(0*) = ming ¢ or H(0) plays an
important role in dynamics (1.1). We shall study the probability of the event,
that the point o(1:%) € 2} with

o) = L@ (k=1,...,[bN]), o) =& (k=14[N],....N) (L5)

is a local minimum of the function (o) on 2}. This means that H(o*:*)) must
be less then the value of H(o) for any o € (2} which is the “nearest neighbor”
of %) in 2}. Tt is easy to see that, it is so if and only if for any k = 1,...,[§N]
and j =[0N]+1,...,N

N N
—ijja§1’5)0,(cl’6) + 01(4176) Z jkial(l’é) + 0;1’6) Z jjial(l’é) >0. (1.6)
i=1,i#k i=1,i#j

It is useful to introduce at this point the definition of “effective fields”.
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Definition 1. The effective fields generated by the configuration o on the neuron

k is
N
Zr = O Z J]“'O'i

i=1,ik
Our approach is based on the analysis of the joint probability distribution of

the variables z;, (kK =1,...,N).
~Nconsts® 1) matrix elements Y

Since with probability larger than 1 — e
satisfy the inequality
(1.7)

one can derive from (1.6) that, if we denote by # the effective fields, generated

by the configuration ¢ (1+9)

N
By = U(l ? Z jkmz(lm, (1.8)
i=1,i#k

the necessary condition for (1) to be a local minimum point is

min &) + min m? > —£, (1.9)
k=1,...,[6N] j=[6N]+1,...,.N
and the sufficient condition has the same form with +¢& in the r.h.s. Thus, if we
consider the events

Anlq) = {&} > q}, (1.10)

then the event M that (1%) is a local minimum point satisfies the relations

oN
a2 (D21 AL0) N 0 AL(G) € M w11)
C Ugtg'>— s(nk 1-/40( ) ﬂsz[éN]H AR().
So we should study the behaviour of
(1.12)

Pr(g,q') = Prob{ni AR (a) M gy 1 ARG -
Observe that, in particular, Px(0,0) is the probability to have a fixed point of

dynamics (1.1) at the point o9, Now let us introduce the new notation
(1.13)

(1,8)
=M (u=1,..p, k=1,..N).
,p) are also i.i.d. random variables assuming

Then & (k=1,...,N), (p=1,...
the values +£1 with probability 3. Denote
. 1 <& p+1 ON
(1.14)

Here an appears because we include in the summation the term with j = k, the

term 4(1 — 20y) is due to the term N~1(&',o(1:9)), and the sign here depends
[0N] and minus for k = [0N]+1,...N.

on k: it is plus for k=1, ...,
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To simplify formulae we introduce also

@ =an+1-20y+qg—af, ai=a+1-20+¢

a=any —1+20y+¢ — a3, as=a—-1+20+¢ (1.15)
which yield
[6N] N
Py(g.q) = (J] 0@k —a)) [ 6@k —a2)). (1.16)
k=1 k=1+[dN]

Here and below the symbol (...) denotes averaging with respect to all {&} }
(k: 17"'1Na/"’: 1aap+]‘)

In order to formulate the main results of the paper we need some other
definitions.
Consider the function Fo(U,V;a,d, q,q") of the form

aj aj
Fo(U,Via,8,q,¢") =6log H(—= —V)+ (1 =8 logH(= -V
o ) (G-V+O-Deh(G-v)
-UV + §V2 + alogU,
where ) -
H(z) = — /244, 1.18
=] e (1.18)
Define also
Aw) = - LiogH e s/ 1.19
(m)z—%og (@—ma (1.19)
1, ai,
AU, V)= =A -V
1121( ? ) U ( U )’
DU,V) = 3~ dA1(U, V) — (1 —6)A2(U,V) (1.20)
1
—50(1= 6) (A (T,V) - Ao(T, V)2,
and
fO(Uav;aaéa%ql): lf D(U,V) 20
a*
7[6logH(—1 -V)
FOWU,Via,0,q,¢) =4 1 —2POV) o v V2
+(1-9) logH(FQ -V -UV + 5+ alogU,
if D(U,V) <O.
(1.21)
Theorem 1.
1 [6N] N
lim sup — log(H 0(Zr — ay) H 0(Zr — a2))
Nooo N 200 k=1+[6N] (1.22)

< : D . ! _g g
_%lg%(m‘}nfo (Uavaaa(s:an) 210ga+ 9
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Remark 1. Note that in all interesting cases (see Theorems 2 and 3 below)

max min FP(U,V;a,6,q,q) = maxmin 7o(U, V@, 0,q,q')

and one can substitute P by Fy in the r.h.s. of (1.22).

Remark 2. The proof of Theorem 1 can be generalized almost literally to the
case ( cf. (1.16))

[6N] N
Pygn(@d)=( I 0@ —a) T 0@ —a2). (1.23)
k=1+[61 N] k=1+[dN]

We obtain

. 1
lim sup — log Py, n1(4,¢") <
Voo N . . (1.24)
. . AN —_
r(r};;é(m‘}nfl (U,V,a,é,él,q,q) 210ga+ 2’
with (cf. (1.17)-(1.21))

fl(UaV;aaéa(sl:qaql)ﬂ if Dl(U,V) ZO;
a*
——rr (6 —d)log H(= = V)
FP(UV;a,8,61,q,4) = 1 =20 OV) U,
+(1-9) 1ogH(U2 -] -UV + 5V2 + alogU,

if DY(U,V) < 0;

(1.25)
where
fl(UvV;aaav(Sl:qaql) = (6 - 61)10gH(a_1 - V)
a 1 .U (1.26)
+(1-9) 1ogH(U2 -V)-UV + §V2 + alogU,
and
1
DY (U, V) E(1—61)_1[§—(6—51)A1(U,V)—(1—6)A2(U,V) (1.2
1.27
1
L5801 - AT - AU V)
with A; 2(U, V) defined in (1.20).
Theorem 2. If a is small enough, § << a®loga™" and ¢ =q' =0, then
p L N 1-26
lim sup — log(H 0(Zr — ay) H 0(Zr —az2)) < dlog H( )
N—oo N k=1 k=1+[6N] va (1.28)
1-26

+(1—8)log H(— )+ O0(e V) + o(dloga™).

«
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Thus, P¥(0,a) - the probability to have a fized point of the dynamics of the

Hopfield model at the distance & from the first pattern has an upper bound of the

form:

1-26
Va

)+ O0(e™ V%) + o(8loga™") + o(1)]}.

Py (8, a) < exp{N[-dlogd — (1 —d)log(1l —4) + dlog H(
1-2§
N
Remark 3. It follows from Theorem 2, that J.(a)- the minimal § for which

Py (3, ) does not decay exponentially in N, as N — oo, has the asymptotic
behaviour

)

+(1—96)log H(—

dc(@) ~ ﬂ671/2‘1.
Var
This result coincides with the formula found by Amit at al. with replica calcula-

tions [A-G-S] and the one, obtained by J.Feng and B.Tirozzi in [F-T], using the
extreme value theory.

Theorem 3. Denote by A the event that there exist some 6, > 0 and some
point o° € B}, such that ming¢ o1 H(o) — H(o®) > e2N.
Then if for some a and §

. (D ) o Lo
I?;‘qu{j‘xmvm{fo (U, V;a,0,9.—q)} 5 loga + 5 +C*(9) <0, (1.29)

then there exists some C(a) > 0 such that
Prob{A} < e=NC(@), (1.30)

Here and below
C*(0) = —dlogd — (1 —0)log(1l —6). (1.31)

Numerical calculations show that condition (1.29) is fulfilled for any a < a, =
0.113....

The paper is organized as follows. In Section 2 we prove Theorems 1, 2 and 3. In
the process of the proof we shall need some auxiliary facts which we formulate
there as Lemmas 1-4 and Propositions 1-4. Section 3 is devoted to the proof of
the auxiliary results.

2. Proof of Main Results

Proof of Theorem 1

To make the idea of the proof more understandable we first carry out all com-
putations when {¢J'} are Gaussian random variables. Since this part has no con-
nection with the rigorous proof of Theorem 1, we just sketch the proof, without
going into details.
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To find Py, which corresponds to Py (see (1.16)) in the Gaussian case, we
study the Fourier transform of the joint probability distribution of the variables
Tk

PG ) = (20) 0l 3 160)
N
— (27T)_N/2<GXP{ZZ 1/22{# —1/2 Zf;)}) (21)

— (27r)7N/2 H <eiﬂ”6”>,

where we use notations
N N
it =NV e, =Ny ek (2.2)
k=1 j=1
It is easy to see that
(™) = (2m) 7! / e G ) (2.3)

Thus, using the inverse Fourier transform for the function F((y, ..., (n), we get

1 5 N N
P = W /kl;[l&(xk — ag)dzy, /(]1_[1 de)exp{—i;wka}F(Cl, s CN)
P N
- (27r)(1N_+p) / (H e dut dv) H / dzy8(zy, — ax) / dGi (exp{~iCrzs
+Z utat + ot ot)}) = & N+p/ H ﬂu#y#duudvu H /dmka (z — az)

p=1
/2

/d(ke*lg’“m’“/ H \(;l ) exp{i(N 1/22u“5kck+N 1/221)"5“

p=1

1 - al
= @ /(H e dut dv*) H /dxkﬂ(a:k —ag)

/de e ZCkwk H exp{—M})
. (v ) (2.4)
W/ H exp{—iutv* — ——}dutdov*)

p=1
8(xy — ar) (izp + N"15°P_ utor)?
'H/ don =g oxp{ S b
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where U = (N1 Zﬁzl(u“)Q)l/Q. Therefore we have

p » »
1
P]% = (271')7:0 /(H duﬂdvu) exp{—i Z utot — 5 Z(UM)Q}'
p=1 p=1 =1
N ap— N wr

HH( =

k=1

(2.5)

Now let us fix uw = {u"}ﬁz1 and change variables in the integral with respect to

v= {Uu}ﬁﬂ .
v = ﬁ(él,ﬁ), Vg = (52,5),...,'01) = (Ep,ﬁ), (26)

where {€;}7_, is the orthonormal system of vectors in R? such that e}’ =

(UVN)~'ut. Then, integrating with respect vs, ..., v, we obtain

Pl = @m0 [([Ldu) [ do exp(=iNUv, - G0 @.1)

+[Nd] logH(a—Ul —iv) + (N — [N4)) 1ogH(“U2 — i)}

Using the spherical coordinates in the integral with respect to @ and integrating
with respect to angular variables, we get

o N
Py = I‘(p)/ dU/dv1 exp{(p—1)logU — iNUv; — 3(01)2
0 (2.8)

+[N] logH(a—U1 —iv1) + (N = [Nd]) logH(aﬁ2 —iv1)}.

Let V(U) be the point of minimum with respect to V' of the function Fo(U, V)
defined by (1.17). Let us change the path of integration with respect to v; in
(2.8) from the real axis to the line L which is parallel to it, but contains the point
z = —iV(U). Then, following the saddle point method, we divide the integral
into two parts

P} = F(p)/ dU(/ +/ Ydtexp{(p — 1) logU
0 t>N=1/s i <n-s

~NUV(U) + 5 (V(0))? = iNUt - N (2.9)
+[NO] logH(a—Ul — V(U) = it) + (N = [Né]) log H(> = V(U) = it)}.
Due to the simple inequality
|H(a +ic)| < H(a)e® /2, (2.10)

valid for any real numbers a and ¢, we conclude, that the second integral is
o(1) exp{NFo(U,V;a,d,q,q')}. Replacing in the first integral Fo(U,V(U) — it)
by its Taylor expansion up to the second order term (the first order term is zero
due to the choice V(U)) and then performing the Gaussian integration, we see
that

Py < I'(p) / AU exp{N(Fo(U,V(U);6.4,) + o)}, (2.11)
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Applying the standard Laplace method, we conclude that for the Gaussian ran-
dom variables £§ Eq. (1.22) can be replaced by the following stronger statement:

«

1
lim sup Nlong = %&%fo(U’V(U)?‘qu’q') - %loga + 5

N—o0

The difference of non-Gaussian case from the Gaussian one is that we have,
. . . H + o M + 2
in the sixth line of (2.4), []}_, cos “C#” instead of [)_, exp{—%}.
To replace the former term by the latter one we have to estimate the difference

between them for different @, T and ¢. To this end we introduce some smoothing
factors in the integration (2.4).

Lemma 1.
N 2 1/2
(T] 6En — an)) < PRI (1L — /22 ~NeNot) 4 o= Consintez) ™% (919
k=1
where
1 - . . (ﬂ U) (5 5)
Pl = _ o ? o 3
N 7(27T)N+p/dudﬁexp{ iln(T,v) — ey 5N " ENToN }

N p
. VY ut (g + v
T [ detnn(Goe6E/2iond T cos 2k 20
kl/ p=1 N

e = (loglog )™, In = 1+ 3/1—4(e})?, X is a fized positive number and

5 2 N4 op N1/
Xn.(€) = = sin(—————exp{—i( }
¢ 2 2
is the complex conjugate of the Fourier transform of xn n(x) -the characteristic
function of the interval (—h, N*/?+® + h) with some positive d and h > (22)2,
Here and below v = (v!,...,vP), w = (u',...,uP), dv = Hﬁzl dv* and du =

p Iz
1 dut.

Remark 4. In fact we can take €3y — 0 as slowly as we want, we can even fix
ey = € with ¢ being small enough. However, in this case we have to be more
careful to control the constants which will appear in our estimates.

Now we start to prove Theorem 1. Denote

. ]- ~ _ _ia Ld UH + /UH
FN,k(UaU) = 5= /deXN,h(Ck)e AGE /2—ian G H cos Cki;
2 n=1 VN (2.13)

F(@,v) = [[ Fnva(@,0).
k
To simplify formulae in the places where it is not important, we confine ourselves

to the case a, = a. Since in this case all Fyy ;(u,v) are identical, we could omit
the index k.
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To replace the product term of cos in Eq. (2.13) by the exponent we modify
a method originally proposed by Lyapunov. He employed it to prove that the
distribution of the sum of independent variables uniformly converges to the
normal distribution (see [Lo]). To ensure the method to work, the second and
the third moments of the random variables must be bounded. Since in our setting
the random variables have the form u#¢} and v*£f and their moments coincide
with [u#|?? and |v#|*?, we need to remove large |u*| and |v”| in the integrals.
For this purpose we take ey = (log N)~! and denote

Xen (W, ") = (X VN — [u)0(en VN — |0"|). (2.14)

Note, that the different powers of exn in the f-functions for v and v are
necessary in our estimates below.

Rewrite
P = oy [ @) el - R 0,0) - D@t
(2m)? 2 2
s T T
v=m+1
5 _ EN _ ~ p
e 2 (u7u)€— 2 (vﬂ))e—le(u 'u)F( ) Z CmI
m=0

Let us first estimate I,,, in the above equation

Il < o | crcrH — en (0, 0))

P . . (2.16)
II dew (@ 0)em FEDem 00 H /dckmh Gi)le™ 72,
v=m-+1
Now, using the bound
~ _ 2
Gkl X (G e/
9 24d ACE /2 (2.17)
= /de|C— sin((x )|e~ %%/ < const log N,
k
we arrive at
| < econstNloglogN(Ejv)—pe—mNaj‘va‘}v/Q.
Thus,
»
| Z C;n]-m| Se—COHStNloglogN’ (218)

m=mgy

where mg = [(log N)®] >> (e%) "'y’ loglog N.

In the following it would be more convenient to have the integration with
respect to u',...,u™ and v!,...,v™ in the whole R. Therefore, we perform the
first product in (2.15) and rewrite _,° | C7"I,,, in the form
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mo mo o
> CrIn=> Cnln, (2.19)
m=0 m=0
where
~ 1 P e*N _ e*N _
I = (27) /dﬂdﬁuzl;lﬂ e (ul', vt )e™ 2 (00 g2 (00 eiln (00) f(77, )

(2.20)
and C,, are some combinatorial coefficients. These coefficients are not important,
because for our choice of m (m < mg = o(N)) all of them are of the order ()
and after taking the logarithm and dividing by N give us o(1)-terms. Thus, we

have
mo

P]lV — Z émINm + 0(67 COIIStNloglogN). (221)

m=0

To proceed further we define

(625 i2)
2N }
(’Ul ) 61)

. A2 /9—ia u“(+v“
:/dCXN,h(C)e AT /2—iag HCOSW

F(m) (ﬂl,ﬁl;ﬂQ,ig) = exp{—
a—h— Z'(Emiz) _ (Ul,g )
N
‘<HN,h,U(

p=1
1 1 1
eXP{—ﬁ(%a@) N(UN&)C - W(Umw)@},
where
1 N1/2+d 9 1
T +2n S@+o?)d (2.23)

HN,h,f](z) = \/—2—71_ 0 \/UQ— )eX {

Here and below u; = (u?,...,u™) and 7y = (v!,...,v™), Uy = (™, ..., uP), Uy =
(vm*1 . vP), so that & = {uy,us}, U = {1, Ua}, & = (€1, ..., &) is the random
vector with independent components, assuming values +1 with probability %,
(...) means the average with respect to &, and U = [+ (s, 72)]'/2. Expression
(2.22) is obtained from (2.13) by changing cos in the product Hﬁ:m+1 by the
correspondent exponent and then by integration with respect to (x.

The main technical tool at this step is a lemma, which is a modification of
the Lyapunov theorem.

Lemma 2. For any T, U2, Ao such that |u”|, [v”|,|\| < enV'N and any @, 51, M
the function

R™ (@, W, ;T2 W) = Fn (U, W1; T2, Wa) — F™ (U, ; o, W2)
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admits the bound

|R™ (@, 13T, 5)| < consteqy (1 + “2]’\?2))(02 + )12 o2
exp{— /\(v2;v2) + (/\7/\) (/\a)‘) .

—4
ING? 1) N } + exp{— constey” + T}

Here and below W=7 + i\.

This lemma allows us to replace in our formulae Fy by F(™) in the following
sense. Let us write

fm: (ut, v*) exp{—iln(u,v)}
v=m+1 * .
‘(F(m)(ﬂljlﬂﬁ) +R(" )(Ul,vh%,@))Nef (0T (2.25)
N
= ZC]kVIm,k )
k=0

where

uu /UH —iln(u, ”)(F(m)(ﬂl,ﬁlaﬂ’ﬁ))Nik

v=m+1

o*

(R™ )(ul,vl,u2,62))’“6‘7(5@@‘%(“@.
Lemma 3. For k > ko = [N log™*/? en']
[Imk| < eV const (en)?*(en) 2" exp{—Fk const logey'}.

Thus, we get that for k& > ko I, have the order e—Nconst log'/?eXt 44 5o we
can neglect these terms in (2.25).

Now we shall study the leading terms in the r.h.s. of Eq. (2.25) (I, with
k < ko). In fact, the next step is a version of the saddle point method (cf.(2.8)-
(2.11)).

Let us take any real fixed V and change the path of integration w.r. to v from
the product of intervals (—exv/N,env/N) to the product of the paths L¥ U LY,

with LY = (—eyV N ’VJ‘ ,ENVIN ’V—“) and LY = (—enyVN,—enVN —
ivgy) U(env N ’VI}L ,EN\/ N) (v =m+1,..N). It can be done, since all our
functions are analytical w.r.to v”,

Then take any real A, such that (A1, A1) < N const and choose the paths of
integration with respect to o1 as L* = {w* = t* — i\*,t* € R}. Finally, we get

I = (% o m/d_l/ i crl/ . dm
n=1 v=mt1 L
. / dw, / d_3d_4e v (@)/2g=en (WA)/2 (2.26)
Hf:p*nJrng _EN\/i

eIV (P (1, )N (R (@, ) = Z Lo
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Here and below ©w = {uy,%s,Us}, W = {wy,Ws, W4}, where Uy, w; are the same
as before and we divide vectors w2 and s in two sub-vectors us = {us,us},
Wy = {wWs3, W4} in such a way, that Uy, W, include the last n components of .
and w, respectively.

Now let us get rid of I,  , with sufficiently large n. Similarly to the proof of
Lemma 3 on the basis of Lemma 2, we get

|Im,k,n| S eNCOl’lSt (E}kv)fpef const nNs?V exp{(Xl,Xl) +NV2}. (227)

So, taking n > ng = [51_\,5/2], on the basis of (2.27) one can conclude that we
need to study only the first ng terms in (2.26).

Remark, that starting from this moment, we shall distinguish the terms with
a; and as. Denote

G:'(n(Ua Vaﬂlaxl) =

a —h=VU - N"'"2w,§) (M, &)
(H T e
.<H(a2_h_VU_Nil/Q(ﬂlagl))eX {()‘1161) >175 (228)
N/EE) PUUN

I - 1
-exp{—%(ﬂl,)\l) —INUV + EVQ}.

Lemma 4. Let Gy .o (V, %1, M, U3) be the function which we get, if in (2.26)
integrate with respect to wy, ws, Uy and wy. Then

|Gm,k,n(va Hlaxlaﬂ3)

|
T [ 2.29
< (20) PG (U, Vi, Ay)) Ve B mm)+No(), (2.29)

Here and below U = [N~ (us, u3)]'/?, so that U = U? + N~ (ty,Us).

Once we have an upper bound for Gy,  , we can estimate all the I, in (2.21).
Let us study first the term with m = 0. Consider the function

aj—h-VU a} —h—VU
Fan(U,V) = dlog H(lljﬁ) +(1-9) logH(QUﬁ) 2.30)

UV 4+ V2
+ 2
Let V(U) be chosen from the condition

Fo(U,V(U);,6,4q,q") = min Fo(U, V;ad, g, q). (2.31)

The function Fy (U, V(U)) and the functions which appear in the exponent
of (2.29) for m = 0 satisfy the inequalities of the type

2

FanlU,V(U)) < alogl ~ -
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(it follows from log H(z) < 0 and V(U) < U). Thus, since a1 2 — aj, and
In = 1 as N — oo, on the basis of (2.29) for m = 0, we get

ol < (2m)7/? / 03 exp{N[Fan(U,V(U)) + o(D]},

where I is defined by formula (2.20) for m = 0.

Remark 5. Let us note, that here we have use the following simple statement.
If the continuous functions ¢(U), ¢n(U) (N = 1,2,..) (U € Ry) satisfy the
inequalities
P(U),on(U) < =C1U, UL
o(U), ¢on(U) < C2loglU, U<e

with some positive C; and Cs and ¢n(U) — ¢(U), as N — oo, uniformly in
each compact set in Ry, then [exp{Non(U)}dU = e°N) [exp{N¢(U)}dU.
The proof of this statement is very simple, and we omit it.

(2.32)

Below we shall use this remark without additional comments.
Performing the spherical change of variables and using the Laplace method,
we get now

[To] < exp{N[max F (U, V(1)) + alogU — % log o + % YoM]).  (2.33)
To study the terms with m # 0 we chose A\ (U, V,%;) in such a way that

G:n(U, V, ﬂl,Xl (U, V, ﬂl)) = _min G:n(U, V, ﬂl,Xl), (234)
A ER™

where the function G}, is defined by (2.28). Then we use the inequality, which
follows from the fact that (log H(x))" < 0.

H(z+vy) < H(zx)e 4@y (2.35)
with the function A(z) defined by (1.19). On the basis of this inequality we get
aro—h—VU - NT1/25™ qyrel m
(H( i e DR )
VUZ 4+ A = VN

_h— m H
< (@2 VU, expf{ 3 (AN + A”)% )
p=1

VIR
(2.36)

where

). (2.37)
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Thus,

_ _h—
G (U, V, a1, M (U, V,1y))| < exp{élogH(%

CLQ—h—UV 1 9
—— ) - INUV + -V
VU2 + A )~ 2
0 X (Ah) 20, 1-6 (Ash) 2 (2.38)
Fginlgy 2L (AT T R ) (A )

p=1
In &
- Z Mty
p=1

)

+(1—9)log H(

Taking M\ = (1 — AgA’h)é - Ag"h)(l —¢6))u*, which give us the minimum of the
expression in the r.h.s. of (2.38), we get

ay — h — UV)
. VU? + A

) = UV + 5V = DA, V) (@, )},

|G (U, V, 7y, M\ (U, V,1))| < exp{NI[dlog H(
ag — h—-UV
U2+ )\

(2.39)
+(1—46)log H(

where DAM)(U, V) is defined by (1.20) if we substitute there A; o(U,V) by
AU, V). From (2.39) it is easy to see, that if DM (U, V) > 0, then

*

| [ dm GV, X @,V expl - )

T—h-UV ay—h—-UV
< eNoW exp{N[plog H(L =) + (1 - §)log H(Z——") (240
< M exp N () + 0 g MU ) 20
—UV+§V2]}.
If DMP)(U, V) is negative, we use
Proposition 1. If DOM(U, V) < 0, A and h are small enough, then
— e*
| [ G . Vo R Vi) exp{- S (mm)
ai —h-UV
< N log H(—t——v—
—eXI;{ oy e ) (2.41)
1-— asy—h-UV 1
log H (-2 — V2 +o(1)]}.
+1—2D(>‘vh)(U,V) og H( B ) UV+2V +o(1)]}

Thus, on the basis of (2.39) and (2.41), we have got that for any n-independent
finite V/

*

| [ dm G,V R U, Vo) exp{ - S, m) + ()|
< exp{NIFLh(U. V) + o))},
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where for DM (U, V) < 0, }')?h(U, V) is defined by the expression in the expo-

nent in the r.h.s. of (2.41) and for DMM)(U, V) > 0, it coincides with Fy (U, V).
Then, choosing V' to minimise this estimate for any U, we get

/da3|/da1G:n(U, Vo, T (U V) expl =2 (i, ) + (15, )|

(2.42)
< /dU exp{Nmin 70, (U, V) + alogU — S loga + 2 + o(1)]}

2

Thus, for any m < mg = o(N)

|| < exp{Nmax{min 70, (U, V) + alogU} = Sloga+ 5 + o(1)]}.

Hence,

Py < exp{N[mlz}xm‘;n{}'f’)h(U, V)+alogU} — %loga + % + o(1)]}.

Therefore, on the basis of Lemma 1, we have

[6N] N

. 1 . -
111{,11_>s;10p N log<H (T — ar) H 0(zy — az))
k=1 k=1+[6N]
< mlz}xm‘;n{ff’)h(U,V)} +alogU} — %loga + % +o(1).

We get the conclusions of Theorem 1, after taking the limits A — 0 and then
h—0.

Proof of Theorem 2
To prove Theorem 2 let us show that if « is small enough to satisfy the condition

" < o, (2.43)

then

* *
a] — as; —

)
Va Va
+% log oo — % +0(0%a™?) +0(e V) (2.44)

= Fo(vVa,va;0,5,0,0) + 0(0%a~®) + O(e™'/*).

m[?xm‘;nfoD(U,V;a,(s,O,O)SlogH( )+ (1—0)log H(

By virtue of the condition § << a®loga™!, we get then the statement (1.28) of
Theorem 2.
We start, proving (2.44) for U > 2+/a.

Proposition 2. If U > 2/a, and V(U) is defined by condition (2.31), then
Va<V({U)<U.
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On the basis of Proposition 2, we get

FP(U,V(U);a,6,0,0) < alogU — V(U)U + %(V(U))Q

o o (2.45)
< alogU —+/aU + ) < alog2va —2a + 5

Here the first inequality is due to log H(z) < 0, while the second and the third
follow from Proposition 2. But, using the asymptotic formulae

1

)= e (14 0(1/2%) (o >> 1), -
H() = 1+ —=e (14 0(1/2) @ << -1)

and condition § << a®loga™!, it is easy to get that the r.h.s. of (2.44) is
Fo(Wa,/a;a,6,0,0) ~ alog/a — % +o(a?) > alog2v/a — 2a + %. (2.47)
This inequality and (2.45) prove (2.44) for U > 2+/a.

Now let us check (2.44) for U < 0.5y/a. To this end let us write equation for
V(U) which follows from (2.31).

1-2 —(1-2
U:V+6A(HT6—V)+(1—6)A(¥—V), (2.48)
where function A(z) is defined by (1.19). By using asymptotic formulae
6712/2
Alz) =2(14+01/z)) (z >>1), A(z) = (1+0(1/2)) (z << =1),
V2
(2.49)
we get that in this case
V(U) = U + o(a?).
Therefore
1
TP U, V(U);a,6,0,0) < alogU = V(U)U + = (V(U))?
2 (2.50)

U2
<alogU — 5 < alog0.5v/a — %.

Now, using again (2.47), we obtain (2.44) for U < 0.5\/a.

Now we are left to prove (2.44) for 0.5v/a < U < 2y/a. Let us prove first,
that for those U the function D(U,V(U)) defined by (1.20) is positive. To this
end we use again asymptotic formulae (2.49). Then we get

A (U, V(U)) =U2 +0(a?) = O(a™h),
AU, V(U)) = O(a™"?e"1/52) = O(/a).

Here in the last equality we have used (2.43). Using these estimates, it is easy
to obtain that D(U,V(U)) > 0 and therefore for 0.5/a < U < 2+/a,

73 (U, V(U); ,6,0,0) = min Fo(U, V3 ,6,0,0).
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But
mr?xm‘;n Fo(U,V;a,0,0,0) < mlé}xfo(U, U;a,6,0,0)

B U2 a a’ (2.51)
= mlz}x{alogU -5 + 5logH(U -U)+(1-9) logH(U -U)}

Taking the derivative of the r.h.s. of (2.51) with respect to U we get:

)

— Fo(U,U;,8,0,0) =
N s U ag( ) " o (2.52)
— —U+0(= +DA(ZE -U)+(1=8)(-3 + DA(Z -D).
U U2 U U2 U

Using asymptotic formulae (2.49) we get the equation for U* which is the max-
imum point of the r.h.s. of (2.51):

;* U+ 0(§) +0(e 120 =
S0
U* =a+ O(%) + O(e~1/?9).
But since %(a logU — %UQ) = 0, the Taylor expansion for this function

U=y
starts from the term (U — /a)? and we get

Fo(U*,U*;,6,0,0) = Fo(va,Va;a,68,0,0) + O(0%a~?) + O(e /).

Hence, we have proved (2.44) and so (1.28) is proven.
Now one can easily derive the estimate for Py (d, &) from the inequality

Py (8,0) < CNM Py (0,0),

where Pn(q,q") is defined by (1.12). Thus, we have finished the proof of Theo-
rem 2.

Proof of Theorem 3

It is easy to see, that, if for some ¢ > 0 for any local minimum point o* in 2}
we can find a point 7** inside the ball B}, such that

H(o*) — H(o**) > 2N, (2.53)

then the event A takes place. Let {z}}2_, be the effective field generated by the
configuration o*. Consider I(6*) C {1,2,..., N} - the set of indexes i1, ..., i[ng)
such that oé! = —1. Assume that the number N. of indexes i € I(o*) for
which 2} < —(3 + @), is larger then e N (we denote the set of these indexes by
I.(6*)). Then consider the point **, which differ from o* in the components
with [eN] + 1 first indexes i € I.(o*), and coincides with ¢* in all the other
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components. Since we have changed only the components of o* with indexes
i € I.(6*) C I(6*), o** € B}. On the other hand,

Hio™) - H(o™) = 230 — 0", (0™ + %)) =

(2.54)
> (14 2a)e?N — g((cr** —o"), (™ —0a"))
> (14 2a)e’N —2ae’N > &N,

where J° is defined by (1.2) with zero diagonal elements and we have used the
inequality J° + aI = J > 0.
So, we have proved that
AD UesoB:, (255)
where B. denotes the event, that for any extreme point o* € 2}, the number
N. of indexes in the set I.(o*) is larger then e N. Hence,

A CNesoB:, Prob(A) < iI>1f(; Prob(B. N Kz) + Prob{K:}, (2.56)

where the event Kz means that inequalities (1.7) hold. Let us note now, that B.
corresponds to the event, that there exists a local minimal point o* € (2}, such
that N. < Ne. Thus,

[eN]
Prob(B. N K:) < 3 CRN Ok Prob(BL, N K:), (2.57)
k=0
where Bg’k denotes the event, that the point o(*9) of the form (1.14) is a local
minimal point in 2}, and & < —( + a)e for i = 1,..., k. Taking into account
that under condition (1.7) the necessary condition for ¢(1%) to be a minimum
point is (1.9), we obtain that for £ # 0

Prob(B? , N K:) SProb{i?Z—(%+a)5, i=k+1,...,[0N]; (2.58)
’ 2.58
1
i >-¢ j=[N]+1,....N} = PNJC(—(5 + a)e, —&).

And for k=0
5 1 . .
B2onKz € (NZT AN (= (5 + @) )N s 1 AN ) U(Ups (0540 C(@), (2:59)
where A9(g) is defined by (1.10) and

Clq) = in 79> i i =—q—¢}. 2.60
() ={_min  &i>q  min  5=-¢-& (2.60)

=1,..,[6N]

But it is easy to see that for any A > 0, if we denote
ON ~
Alg,—a = 4) = n2A(@) N0 AN (g - A=),

then ~
Uo<t<1C(q+tA) C Alg,—qg— A —¢&) =
Prob{Uo<t<1C(q¢ +tA)} < Py(q,—q— A - é).

To have an upper bound for the value of ¢ which we need to consider we use

(2.61)
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Proposition 3. For any positive a < 0.113 § < 0.6a? there exists qo(c, §), such
that for any d > 0

Pmb{Uq>q0+d~C(q)} <exp{—-NCj},

where C; > C*(0) with C*(6) defined in (1.31).
For a <0.113, § < 0.00645 and § < 0.60>  go(a,d) < 0.13.

On the basis of this proposition, we can restrict ourselves by 0 < g < g + d
and, using (2.59)-(2.61), write

M

Prob{B N ICE‘} S PN(—(% —+ a)g) —5) + ZPN(ZA, _&— (l 4 ].)A)
1 =1 (2.62)
< Py(—(z +a)e,é) + M  max PN(q, _q_A_§)+e—N03’

2 0<q<go+d

where M = W. Now, using Theorem 1, we get from (2.56), (2.57) and
(2.62)

PrOb(z N /Cg) S exp{—NCj}

(M + )CENCEN (exp{N[C (a6, 8,2, 4) + o(1)]}, (2.63)
where
C(a,6,&,e,A) = max| max max F(U;a,é,d, —(1 +a)e,—€) — @ loga + g;
0<81<e U 2 2 2
mgxm‘}nfoD(U,V;a,é, —(% + a)e,—€) — %logofu + %; .
q>5r(rg_1§(+a) mla}xm‘;nfoD(U, Via,d,q,—q— A —¢) — ) loga + 5]

Since FP and FP are continuous with respect to ¢, ¢', 61, we get for A,e — 0

Prob(ANK:) < exp{N[C(a,6,2,d) + o(1)]} + exp{—N(C; — C*(9))}, (2.64)
where

C(a,d,d,&) = max _maxmin{fUD(U,V;a,(S,q,—q—é)—gloga+g+0*(6)},
0<q<go+d U 'V 2 2
(2.65)

and therefore

Prob(A) < exp{N[C(e,6,&,d) + o(1)]} + exp{—N(C; — C*(9))}
+Prob{K:} < exp{N[C(a,d,&,d) + o(1)]} (2.66)
+exp{—N(C;— C*(8))} + exp{— const N&*}.

Since (C; — C*(8)) > 0 for all d > 0, we conclude, that if for some § > 0
C(a,6,0,0) < 0, then we always can choose d and & small enough to provide
that all the exponents in the r.h.s. of (2.66) are negative. Thus, we obtain the
statement of Theorem 3.
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Proposition 4. Consider the functions

&U,q,a,d) = m‘;n{fo(U,V;a,é,q, —q) — %loga + % +C*(0)}

2.67
QSO(qaaaé) = mI?Xé(U:q:a:é) = QS(U(q,Oé,(S),q,Oé,(S). ( )
If for some 0.071 < a1 < as < a¢, 0.0035 < § < §. = 0.00778
b @
Z0(0,02,0) <0, 5 (Ua0.02,0) <0, 50 (U1.0,02,)>0, (269

then @o(q,,6) < 0 for any oy < a < as and 0 < q < qo. Here Uy =
U(0,0él,6) < Uy = U(q0,0Q,(S).
If also 6§ < keo® (k. = 25 ) and

. D . g5 - & a
Un%zi;(am‘}n Fo (U, Via,d) +C*(d) 5 loga + 5 < 0, (2.69)

then C(a,0,0,0) defined by (2.65) is negative.

From (1.29) it is easy to see, that to find a. and J, we should study the
field of parameters «, § where $4(0,a,0) < 0. Let us fix for the moment «
and study the behaviour of the function $¢(0, «,d) as a function of 6. We find,
that it is negative for 0 < § < d1(a) and da(a) < § < d3(a). But for 0 < § <
91 (a) C(a,d,0,0) defined by (2.65) cannot be negative, because if it is so, then
according to Theorem 3, there exists a minimum point inside the ball Bgl. But
by the virtue of Theorem 1, the probability to have the minimum point in (2}
(6 < 01) vanishes, as N — oo, because $¢(0,a,d) < 0. Thus we should study
da(a) < § < d3(a). When « increases, |03(a) — da(a)| decreases and for a = a,
d3(a.) = d2(a.) = d.. Then evidently

0%
$0(0,a.,6.) =0, 7 (0, e, 0.) = 0.

So we find from these equations, that a, = 0.11326..., 6. = 0.00777... Unfortu-
nately, for this (a., d.) condition (2.69) is not fulfilled. So we take a bit smaller
a = 0.113 and 6 = 0.00645, for wich (2.69) is fulfilled. Then, using (2.68), we
obtain the statement of Theorem 3 for all 0.071 < a < 0.113 in three steps:
(1) 0.1105 < o < 0.113, § = 0.00645;
(2) 0.095 < @ < 0.1105, 6 = 0.0042;
(3) 0.071 < @ < 0.095, 6 = 0.0035.

For o < 0.071 the statement of Theorem 3 follows from the result of [L].

3. Auxiliary Results

Proof of Lemma 1.
At the first step we check that, if Z;, are defined by relations (1.14), then

6%, — (a +N1/2+d))> < efconstN“rM_
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To this end we use the Chebyshev inequality, according to which
(6(&x — (ax + N'/2Hd)) < m>in<exp{75k — 7(ax + N'/2T)})

— min e T(ar N2 H Z “yy = —7(ap+N1/2H) T \(»N)

= mine ex mln e COSh

>0 . P 5’“6 >0 ( N)
=

< m>irolexp{—r(a,c + N1/2+d) + a?} < e~ const N1
T

Thus,

N N
(Hﬁmk—ak H T — ag)( ak+N1/2+d—ik)
k

=1 k=1
+0(&y, — (ar + NY2F4)))) < H9 B —ag)f(ag + NY2H — z,))
(3.1)

2V N(0(F, — (ap + NY/2HY))

= Ig- 2

ix — ar)0(ay, + NL/2+d _ i) _|_echIlStN1+2"‘

’,:12

k:l

Consider

Dies, (z',...,xN)

N . ey — N . -

exp{—% Zj,k:l (AL+ ENlNlJ)jklxjxk - % Ej,k:l ENlNl Jik}
IR (2m)N/2det /2N + g%, 15T}

where I is a unit matrix and J is a matrix with entries
12
Jik = ~ Z &&-
p=1

We study the composition D) e« * I1xn,» of this function with the product of
Xn,h(z) (recall that (f * g)(Z) = [ f(T — T')g(T')dT’). Let us check, that for
0<z, < N1/2+d

b

N
H G(zk)G(N1/2+d _ fEk) < (1 . 67h2/2)\)7Nl;5)\{2
Lo (3.2)

Z Jik}-

]J€=1

“(Dxex, *HXNh Ty, @ )det1/2{1+ J}eXp{

Indeed, by definition of composition

(D, * [[xwan) (@i, oo )det1/2{)\1+ 21 Z T YR
k=1
N . 8 N

= ﬁ /exp{—% Z (AT + %:J);kl(xj — i) (zr —2,)} H Xn,h(2))dx),

(27 ,
J.k=1 k=1
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1 1 al 1\2 Al U /
> G | 2o 2“’“ B L S
> \/_/da: exp{— a:) " Wvalz)N.
But for z € (0, N'/2+d)

L /dac exp{—%}(l —xn~,n(2")

—h T—1 > z —a')?
:/ exp{—%}d +/ exp{—%}dz'

-0 N1/2+d 4]

“h oo 2
S/ exp{—%}dm'—%/h exp{— (a:) ~—~1}dx' <2}j\ —5x

— 00

So for h > (22)1/2

ml)Q no_ L —h%/2
= [ s exp{= g hoale) = (VA= <) 2 VA= e 1),

Thus, we have proved (3.2) for z;, € (0, N'/?*?), Besides, using the inequality
log(1+ z) < x, we get

det1/2{1+ J} = exp{— Z log( ;N i}
Ai Ea’(J) (34)

1
< - _
—eXp{2X;J) My SNt = eXp{2,\1 Tty = 2/\l N}

Here o(J) is a spectrum of the matrix J.
Therefore, it follows from (3.2) and (3.4) that for x;, € (0, N'/2+4)

N
H N1/2+d zr) < (1— e—hz/QA)—Nl%/Q
*= (3.5)
-ex p{ N~ (D, HXNh J(@15 s ];1 Jji }-

But for all the other values of {z)} the Lh.s. of this inequality is zero, while the
r.h.s. is positive, so we can extend (3.5) to all {z;} € RV.
Besides, according to the Chebyshev inequality,

Prob{z Jik < N(ey)™Y?} <mine” (67")71/2NE{672JJ"“}

>0
— min o—T(Ex Y U2N p l 1el
in;ge N E {eXP{T; Nf]fk}} (3.6)
< . _ * —1/2 _ _
< min_exp{—7(ey)™ /"N — 5 log(1 - 7)}

< exp{— const (e )"/2N}.
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Here we have used the standard trick, valid for 7 < 1,

Blexplr Y. 66} = (2m) /2 / 0 exp{—y/Tz—— =3 ——}

- (2n) _1/2/dac (cosh ‘—\/g) e = (1 —r)—1/2(1+0( ).

Therefore finally, on the basis (3.1), (3.5) and (3.6), we get

N
<H 0(Zr —ar)) < o~ N(ex) /% const

const N(E;’)lﬁlﬁf/2 N
(1 _ eth/QA)N <(DA1€}¥V * l£[1 XN7h)($1 - a17 "'7$N - aN))

(3.7)
+6

Now to finish the proof of Lemma 1 we are left to find the Fourier transform
DA757V of the function DA’ER‘

lA))\,Ej’V (Z) (271' N/2/dfel D)\E ( ):l;lp/ eXP{——(E Z)

kagk 21 N ka

*

= lN”” exp{—§<<,<) ~ Z((aﬂ)? + @)},

where @* and o* are defined by (2.2). Then

((Dxes, HXNh )(#1 —ay, ..., In — an))

N

=0 | T 6w s (G) exp{—iance) - (B (@) expli 3 o)
k=1 k=1 (3.8)

N A
— 1 (2m)~N / I[ douivaG) v ionte = 367}
H(exp{— *

o

(u )%+ (0") + iad}).

Let us use the representation (cf. (2.3) )

*

EN (@) + (84)7) + it )
N

{exp{— 57
ll/2 *

= QL du"dv"(exp{—%v((u")2 + (v")?) — il yuto* + iutat + ot ok},
7r



On the Critical Capacity of the Hopfield Model 25

where we have taken into account, that by definition (see Lemma 1) Iy = I3 +
(e%)?. Substituting this representation into (3.8), we get

N

((Dx,ex, * H XN)(Z1 = a,...,IN — an))
k=1

N
= (27T)7N7p/ H dech,h(Ck)eXp{—%Cf —iayCy} H/dU“ (3.9)
k=1 )

ex ex al uhCp + v#
-dv* exp{—iutv" — TN(uu)2 _ TN(UILP}HCOS — = Py,
Inequality (3.7) and this representation prove Lemma 1.
Proof of Lemma 2
Take L = % and consider an intermediate functions:
N
(m) " 23
F"(w,01,02,72) = / Ak XN (G ) e R/ 271Gk
-L
utCp + w* 1, 1 e w”’
ul}n €os JN exp{ N(U%’U&)Ck ON (s, ), } Vgn Cos N (3.10)
- L P I I
_ N A2 /9—d utC +w
Frni(U1,701,02,02) = / dCh X p (e~ Mon/ 2tk COS ————.
L 11 VN

p=1

Denote also F\™ by the same formula as F™) with L = cc.
Then

R™ = Fy — F™) = (Fy — Fyp) + (Fyg — FOY)

3.11
H(ES — EOM) 4 (R pm) (3.11)

One could easily estimate (Fy — Fi,) by using the simple inequalities

(32.22) _
(Fy — Fyi) (@ )| < S e~ R/AG < W emcomster - (3.19)
2 [Ck|>L
Let us estimate R(™ = Fyy — FC(F) To this end we consider
v v 2
Gy = 3 logeos “C’“% + 07 4 S, )

v>m

and use the inequality

e/(€4) — /O < |£(G) = FOI(1e/ )] + e/ ).
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Then, since | | |\ﬁ| < Le% < Z and |u”|, |v"],|\| < enVN, we get
|f( k) = £( )l < ICkllf(( )l)2
u” +w" v
=Gl S [~ =tg +¢ + L
S, VN VN » N
u” +w" (3.13)
< |Gkl const ) | [—=ll| K
gJ_VN
1 v v
< Sl const (0°IGef? + = 37 (" + X))
v>m
To estimate |e/(¢*)| we use the inequality, valid for |Rz| < Z
1 1
R(logcos z + 27 %< 5( 2)%. (3.14)

(The proof of this inequality is given at the end of the proof of Lemma 2.) It
follows from (3.14) that

p
Gu” +w”  (Gut +wY)? (wY)?
) =4 _z: 1[10gCOS k VN + = 2N - 2N B
O R N (o S R S T e S I
S;ﬂ 2N _V;n oN 2N T aN
Therefore we derive from (3.13) and (3.15) that
u Ck _(U27U2)Ck B (U2,
|u1>_!n CTUN 1 { 1 v>m \/_|
= exp{— (W2, 72)C — ﬁ(%a%)(kﬂe () — /()]
< const |G (02 + DT H P22, (3.16)
GU? (Uzavz) (T2,72) | (A2, X)
lexp{— — Gk - + }
N N
Tex {_CI% —¢ (U2,’02)} H | cos v’ + 4N I
p 2 k N 7\/N .

v>m

Using inequality (3.14) for | cos ¥ 'H)‘ | (v >m), we get

(2, T2) + (A2, A2) Je MR/
N
uh Gy, + w QU (U, W) (02,Ta) | Az, Ae)
H | cos TN | exp{ 5 Ch N o TN }
(T2, 72) + (A2, X2) (2, 72) n (U2, 72)* n o))

€ — =
S ES SN I EIGERSY

|R£m)(ﬂ1,51,ﬂ2,52 +iXs)| < 5%\;/de([72|§/¢|3 +

p<m

1.
(3.17)

< % const (1 +
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Now to obtain the estimate of the form (2.24) we use (3.23) and the inequality

2(0% + 2)
A

(T, T,)
AN(U? + 1))

(521 ﬂ2)
2N

< exp{

1
Combining them with (3.17), we get

|Rim)(ﬂ1,_51,_ﬂ2,52 +ZX2)| o
(A2, A2) A(V2,72) (A N)

. 3.18)
< €2 t (U2 + N2 (1 + 2222 — = (
< ey const ( ) N ) exp{ NG 4N N

1

To estimate (Fc(zn) - Fc(m)) we use again the inequality (3.14) for | cos —”V\J/rji\?‘v|
(v >m).

G (32,79)

FS @,m) — FO (@,m)] < e % e
2 1 1
X o —Xi /2 . = (AT 2
/CkZL de|XN,h(Ck)|e k eXP{ N(U2,’02)Ck 2N(U27U2)<k} (3.19)

) 42 oy —4
-<eN d¢re Mi/2 < conste N e constey®

[Ck|>L
Thus, we are left to estimate the difference

F) (@), w1, T, Wa) — F™ (@1, W1, T, o)
(51751)

a— i(ﬂ2;m2) - VN i(v1.,81) wY (wo, W) (320)
=(Hpy o = Jem VN ) COS —e 2N ).
v VU2 + A ugn VN

The last multiplier here can be estimated by the same way as in (3.10)-(3.16).
Then we get

|€im_ )l (U2,T2) (A2, )0) (321
W2, W2 V2,V2 2, N2
< constey ——g =5 N )

To estimate the first multiplier we use the bound |H , 7(a+ic)| < €*/2. Thus,
(274 277, (5751) =
a—Z(UQ,’wQ)—— i(T1,61)
<HN,h,fJ( = VN € *}ﬁl
) _NVUP+HN ,
Us, D ESHID) Us, D
(UQ,N’UQ) }(6 \l/ﬁl > SeXp{ ()\1,)\1) (UQ,N’UQ)
2N2(U? 4+ )\) N 2N2(U? + )

By the same way as in (3.16)-(3.18) we can obtain now from (3.20) and (3.21)
the bound of the form (2.24).

Now to finish the proof of Lemma 2 we are left to prove inequality (3.14). For
z=x+1iy (z,y € R) by the simple algebraic transformations we get that (3.14)
is equivalent to the inequality

1.

< exp{

1
E(cosh 2y + cos2z) < o2’ (3.22)
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Since cosh 2y < e’ to prove (3.22) it is enough to prove that
cos 2z < ezy2(2e*m2 -1,
which evidently follows from

cos2z < (267" —1) <« cosz<e /%
Since the last inequality is valid for |z| < 7, we have proved (3.22) and so (3.14).
Lemma 2 is proven.

Proof of Lemma 3
We use (2.24) to estimate the integral

EN\/N . _ E;’ _
;nk E/ @26711N(u2’v2)67 55 (v2,v2)
(F () 5 S Nk (R (71 T Ty T )
(B (1,01, 02,02))" (R (W1, 01, U2, 02))".

By using (2.10), which is evidently valid also for Hy o we get

— — 2 — —
FO) (1, 51, 1y, )| < exp{—izz?2)__ (02,72)
| (1,1, 72,2)| < p{2N2(U2+/\) oN } (3.23)
A(U2,72) A(V2,72) ’
<exp{————} <exp{——————"—1}.
AN(U?2+)) AN (U2 + A)
The second inequality here can be obtained if we observe that J\gfﬁi@i) =

ﬁg—;(Pu52,52), where P, is the orthogonal projection operator on the unit

vector (U)~1N~1/21,, and use the trivial inequality I —

725 Py > 7251 Note
also, that we replace in (3.23) 2 in the denominator by 4 in order to have the
same factor as in (2.24). Hence, on the basis of Lemma 2, we have

EN\/N
| L S/ dvs|(F™ (@, 01, T2, 02)) N "M (R (@1, 01, T2, T2)) |
—EN\/N \/7
3 N — —
- N A(V2,7) (U2, 02)
< ekconst 2k 772 |y k/Q/ dvs expd — V2 et )
R ey ) o
_ —4 N — Vs, Vs Vo, Vs
+ekconst —kconstey /dﬁ expl — b ) et )
T (EESY Ny

< eNconst (Uz + /\)p/26%c + ek const (E}kv)fp/QekaOnStE;ﬁ‘

Substituting estimate (3.24) in the expression for I, integrating over ui, v,
and U we get finally

|Im,k| < (/(02 + /\)p/20p7mestj‘vU2/2dU)eNCOIlSt (EN)Zk
+ek const (Eyv)fpefk constey* )
Using the Laplace method for the integration with respect to U and taking into

account that the second term in the r.h.s. here for k > k¢ is much smaller than
the first one, we obtain the statement of Lemma 3.
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Proof of Lemma 4

To prove (2.29) we use the variables w# = —i\* +tH, (t* € R) (p = 1,...,m)
and w¥ = —i%V +t, (" € R) (v = mg+1,...,p — n) defined in (2.26) and
estimate

|G772L,k,’n(va ﬂlaxlaa3)|

EN N _ EN\/N _
S Z 051(270710/ 2\/_dﬂ4 /H |dE4|/dt1/ \/_dtfj
—& Ly —enV N

ki+ko=k _

_ U (u37t3) - (U4,Wa) (u1,£1)

GrED Vi iy — VN _\([N§]—k
|{e” v~ HN,h,U( >|[ !

\/U2 + A+ N-1(uy,uy)

(31.61)
(e VW HN,hf](

U c(@ds)  (Wws) (W)
-V TN ‘N \/ﬁl ))|N*[N6]*k2

VU2 + X+ N-1(uy, )
| Ry (@, @) |* exp{—In((@1, \1) + NVU — (s, W4))

(3.25)
(N = By s Ts) = V2 5, )
Eé\f ((U ) + (tl,tl) ()\1,)\1) + (t3,t3) — NVQ% + %(@4,@4))}.

Here we consider I, ; as the sum of terms, in which k; remainder functions

R(™ come from the first [§N] factors in (2.25) and ky of R(™) come from the

last N — [0N] ones. Since k = o(N) we have that k; » = o(IN) and C’,’jl = o),
Now we use (2.10) for Hy ;, 7 and the inequalities

p p
Vv
IN @@ < N enVN Y = Y P
v=p—n+1 v=p—n+1

/2

(3.26)
< nefy + nﬁsj{, < const 5}\, ;

0< N~ YTy, y) = U? - U? < nek < 5%2,
which are valid since n < ey /2, [u’| < e%VN (see formula (2.14)) and |w"| <
enVN + g|u”| (v=p-n+1,...,p). Besides, exp{_%\’[()\l,)\l) + NVQU -} <
eNconstex — co(N) hecause of the chosen bounds on A; and V. Then, using the
inequality
Hy pi(2) < H(z), (3.27)

and the fact that k; » = o(IN), we get from (3.25)
(const e VU2 + A)* o-nNEL /4

|G oo (Vo 1, A1, U3) | <

(2P
(G (U, V, )\1)) exp{—%v(ﬂl,ﬂl) . N%NU2 + No(1)}
R (1 T’ (3.28)

N —
/dtldt3/52 \/_d_4exp{—T[(t3,t3) - N(U2+)\)]

2 (1, 1) + (s, B3) + (s, g))}
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Here the term ( const e3v/U? + \)* is due to Lemma 2 and the last line of (3.26),

and the term eV~ /4 is due to the integration with respect to w,. On the other

hand, we should note that in fact integrals with respect #; and 4 can give us
only (const)™ (%)~ ("™ as a multiplier. Since m,n = o(N|loge’|™"), we
take it into account as ¢°®¥). Our main problem is to estimate the integral with
respect 3, because it contains almost p integrations. To perform this integration
let us note that it is of the Gaussian type with the matrix of the form A =

- 7555

the normalized vector \/%U. Since such a matrix A has (p—m—n— 1) eigenvalues
rr2

Ug+>\ - U2+,\’

with respect to #3 gives us (27) "2 const. Thus we obtain (2.29).

Proof of Proposition 1

It follows from (2.39) that

P,), where I is a unit matrix and P, is the orthogonal projector on

equal to 1 and only one eigenvalue equal to 1 — the integration

IOg |G:n(Uﬂ V’ ﬂlaxl (Ua Va ﬂl))|

1 3.29
SN[o(l)—UV—+—§V2]+C’(U,V)—D(U,V)(ﬂl,ﬂl), (3:29)
where
al—h—UV CLQ—h—UV
CU,V)=NélogH(——)+ N1 - §)log H(———).
(U.) = Notog H(HZ o) + N(1 = 8)log H(* o)
On the other hand, using that H(z) < 1, we get
—h—-VU-=- (w1,€;) T E T E _
a1,2 N )e(kxl/%l)) < (e(Axl/%)) < e()\é}\?l)
U?+ )\ - -
Therefore, taking in (2.28) M = u# we obtain
_ 1 1
log |G, (U, 1, M (U, V, )| < N[-UV + EVQ] — E(ﬂl’m)‘ (3.30)
Inequalities (3.29) and (3.30) give us
— 1
log |G, (U, Vi, M (U, V)| < No(1) = UV + 5V7?) (3.31)
3.31
1
+ mln[C(Uv V) - D(Uv V)(ﬂlaﬂl); _E(Hlaﬂl)]'
Now, applying the Laplace method, we get
* m
/d_1|G (U, V.01, 3 (U, V, 7)) exp{— X Z
< exp{N(-UV + 2V +o(1)) (3:32)

+ max min[C(U,V) — D(U,V)(@, @ ); —%(m,m)]}-

(u1,)

But since both functions in the r.h.s. of (3.32) are linear ones with respect to
(@1,;), one can find the maximum value explicitly. It is just the intersection
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point of two functions y = —1z and y = C(U,V) — D(U,V)z. It is easy to see
that
L ___cwwv) W)
nt =05 _DO,v) YT 1 _2DpU,v)

Substituting y;n+ in (3.32) we get the statement of Proposition 1.

Proof of Proposition 2
The inequality V(U) < U follows easily from (2.48), if we take into account,
that A(x) > 0. To prove that V(U) > y/a we use the inequalities:

0<A(x) <1, Alz+y) <A@ +y<l+y (z<0, y>0). (3.33)

From the relations

€—x2/2 a2
AI(.’E) = m(@ /2—.’E\/27TH(.’E)),
V2rH (z)x < / te /24t = e=°/2

it is easy to derive that A’(z) > 0. To get the upper bound for A’(z) let us
introduce the function ¢(z) = log H(x) + ””2—2 Using the identities

o dit e tr—1?/2
0o V2w ’
J2 (et
fooo e—te—t2/2 Jt
The last bound in (3.33) can be obtained as

¢(z) = log ¢"(z) = ((t = (t)a)*)z > 0,

where (...), = , we obtain that A'(z) =1 — ¢""(z) < 1.

Alz +y) < A(r) +y max |A'(s)| < A(z) +y.
z<s<z+y

Taking into account, that A(x) < \/g < 1 for z < 0, we get the last inequality
in (3.33).

Now from the bound A’(x) < 1 we get that the r.h.s. of (2.48) is an increasing
function with respect to V. Thus, to prove Proposition 2 it is enough to prove,

that
«

P va), (3.34)

U > a+ §A( O

V@) + (1 - 8)A(
for U > 24/a. Here and below we denote p = 1 — 24.

Using the last inequality in (3.33) with z = —\/a and y = QT'H’ to estimate
the first A, we get

a+p
U

6A(a;p—\/&)+(1—6)A(a[;p—\/&) <5(a7+p+1)

U(l-9) a+p 0.3U 3.35

a3 GA TV 0w (3.35)
=0.3U(1+ O(a)) + o(a?).

+0.3
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Here in order to estimate the second A in (3.34) we have used the bound
max, tA(—xz) < 0.3, which can be easily checked numerically. It implies

p—a++/aU U < 0.3U

A(— : :
( U )<03p—a+2a_1+0(a)

So, if U > 2y/a, then
U > +ya+03U(1+ O(a)) +o(a?), (3.36)

and (3.34) is valid. Thus, we have finished the proof of Proposition 2.

Proof of Proposition 3
Since for any § > q C(§) C ﬂg.‘g]{i:? > ¢}, on the basis of Theorem 1, we have
got

- . a a
Prob{Us>,C(q)} < exp{N max iin FPWU,V;a,6,q,—o0) — 5 log o + 5}

(3.37)
Let us denote

fO(U7V;q7a76) = fU(Uav;aaéaqa —OO) + g IOgOé + % + C*(é)

2
D _a @, V2, GlogH(aiU™! V)
. =21 = 1 - -
fPU,V;q,a,6) 5 oga+2+C(5)+a oglU—-UV+ +4 1=2D0. V)

and consider

H . < .
ml?x m‘/l.n fU(Ua Va q, a, 6) = m{}x fU(Ua Ua q,«, 6)

§ at a a (3.38)
< 27901 rroy O o x _
_ml;]lx{alogU U=/2 2(U U)X+ 2logoz—k 5 +C"(6) = —oo,

2
as a} — oo. Here we have used the inequality log H (z) < —% (z > 0). Similarly,
for fP(U,V;q,a,d), when D(U,V) < 0 we have the bound
maxmin (U, V;q,a,0) < max f7(U,U; g, ,9)
U2 A@U' —U)
< 1 —U%)2 - — !
—mﬁx{i ogU ’i/ W (- 0)A@T=1)
—§loga+ ) +C*(0) < ml;}x{alogU -U?/2
U? p—U? « « «
= -4 ¢ 4o —Llog2 + C*(6).
5 p(1—6)+U2(1+6)} 5 loga+ 3 +C*(6) — 5 108 +C*(9)
(3.39)

Here we have used the inequalities log H(z) < —A(z)?/2 (z > 0) and A(z) > =.
Thus, inequalities (3.38) and (3.39) under conditions § < 0.6a2, a < 0.113 prove
the first statement of Proposition 3. Besides, (3.39) shows, that it is enough
to study only fo. Since maxy miny fo(U,V; ¢, a,d) for fixed p increases with a
and 4, to prove the second statement of Proposition 3 it is enough to check
that for a = 0.113, § = ez = 0.00645 and g = qo + 20min — 20maz = 0.126
maxy miny fo(U,V;q,a,0) < 0. We do this numerically. Thus, we obtain the
statement of Proposition 3.
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Proof of Proposition 4

Let I = Iy x I, x Iq c R3 with Iy = [Ul,UQ], I, = [041,042] and Iq =
[0, go]. Denote by V (U, ¢q,a) the point of minimum of Fo(U,V;a,d,q, —q) and
by U(q,a) the point of maximum of &(U,q,a). Let us note, that during the
proof of Proposition 4 the variable 4 is fixed. So here and below we omit § as an
argument of the functions ¢ and &,.

The first statement follows from the relations:

U(‘]aa) ely (qEIq, aela)a

¢(U7 q, a) S ¢(U7 05 Oé) S QS(Ua 05 OéQ) S QS(U(Oa a?)a 07 a?) S 0 (340)
To prove the fist line of (3.40) it is enough to check that in I
0*® 0*®
>0, (0<q<qo, 0071 <a<0.113), (3.41)

OUOa — 7 0Udq =
because in this case we have for any ¢ € I, a € I,

0P

&
0= 8U(U1’0 041)) aU(Ulaqaal) aU(Ulaqa )a
0= 22 (Un.a0.02) > S (Un.g.00) > oo (Ua,g,0)
U 2,40, 2 U 2,4, Q2 U 2,4,

and thus U; = U(0, 1) < U(g, ) < U(qo, a2) = Us. Note, that for our choice
of 0.0035 < & < 0.00778, 0.71 < a < 0.1133 and 0 < ¢ < go < 0.13 we get, that
025 <U; < Uy <041.

Let us prove (3.41). To this end we write

e _ Fy 1. OF
8U8a o 8U@Oé O‘aU(?V’ (3 42)
o*d  9*F LV 8 Fo '
oUdq  0Udq LoUdV’

where Fo(U,V:a,6,q) = FolU,V;a,é,q,—q) — Sloga + § and V, , are the
derivatives with respect to ¢ and « of the functlon V(U,q,a ) deﬁned above. By

0
the standard method, from the equation i(U Vig,a)) =0 we get

ov
0*Fo, 4 9*Fo 0*Fo, 4 0*Fo

Now let us find the expressions for the derivatives of the function Fy.

0*F
3V20 =1-0UA} —(1-0)U%AL > 0; —5 = —04] — (1—0)A4} <0;

O, 1 *F

T = "aa A - (104 <0; S
FPFo 1 6 (1-9) .
aUda ~ U Tpht T At oaid

= SUA! + (1 §)UAL > 0;

1 —d)asA;
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34
PFy 0 (1-9) ) (1-9)
=—A — Ay + —al Al — 5 AL;
oUaq U T T rrpahiT T R
PFo 1 sl — (1 - s)aAl; (3.44)
aU%‘Q/ﬁ 1441 2412
0
=3UA] — (1 —§UAL;
avaq U 1 ( )U 25
where A; o are defined in (1.20) and
1 aj aj Vv
A, = mA’(% —V) = Ais(A1s — Ulf + %)
with function A(z) defined by (1.19). We remind here, that from definition (1.15)
it follows that
l<al <125,  —11<a}<—0.85. (3.45)
Let us note also, that for U < U < 0.41
0<dl =2 a2y<La®ycor (3.46)
2T U U, o '
Thus,
0*Fo 0*Fo
0 3.47
90da ~ U0V " (3.47)

2
and using (3.42) -(3.47), we can see immediately that oa > (. To obtain the
e
second inequality in (3.41) we write, using (3.44) - (3.47),
-2
14 1.256U <15,

oo TomRY . l+daid;
27, (1=0)(1—UA,) ~ (1=0)(1—0%4p) =

V2
where we have used also that U?A} , < 1, bounds (3.45) for a} , and 0.25 <

U < 0.41. Then,
2P _ 9% F
9004 = (52(?0‘/ (BUA] — (1 =6 UAL)
v
) 1-9 1) 1-0
+—=A; — ( i )AQ + Ua]‘A’l _ )agA'Q
1_
(=9 54 — 4]

(- g)][Ag(_a; S 150?) — A] >

_gs1=0)A ez Vo
=052 (A — 5+ -~ 2 >0,

>

Thus, we have finished the proof of the first line of (3.40).
To prove the second line we use the simple statement
2 2
Ofo o,

oxr?2 —

Remark 6. If fo(z) = min, g(z,y) and 922 < 0, then also
x
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This statement can be easily proved on the basis of the characteristic property
f(@1) + f(x2) 1+ Ta
1) gl

Then on the basis of the second line of (3.44) we get automatically that

¢
3—2 < 0. Therefore, using (2.68) and (3.41), we get
e

of the concave functions

0P 0P 0P
0< £(U1,0,a2) < %(U,O,az) < £(U,0,a).

And so
&(U,0,a) < &(U,0,as) < D(U(0,a2),0,as) <0 (3.48)
2$
Now, observing that ?3—2 < 0 (see Remark 6), we conclude, that the second line
q

of (3.40) follows from (3.48), if we prove also, that for U € Iy, a € I,

‘Z—f(U, 0,a) < 0. (3.49)

2

dq0U

But since we have proved above that > 0 it is enough to prove (3.49) only

for U = Us.
The second inequality in (2.68) implies that

AQ(UQ,O,QQ) < (5

A1 (Us,0,a0) 1-0° (3:50)
o A1 Ay A
. do A1A2 U YA A A
=5~ VA)A—l((A(xz) — 73) = (A(21) — 1)),
where 21 5 = o _ V(U,q,a). Since A(z) — z is decreasing function (see (3.33))
and U~! — V! > 0 (see (3.43) and (3.44)), we have got that
As(Us, 0, q) < A (U3, 0, an) ) o 8_45(U2’0’a) <o.

Al(U2705a) AI(U2705a2) < 1-46 8q

Thus we have proved the first statement of Proposition 4.

Now we are left to prove, that inequalities (2.68) and (2.69) implies (1.29). To
this end it is enough to check that for § < k.a? and U > \/a, D(U,V(U)) > 0,
because in this case we have, that F(P)(U, V(U)) = Fo(U,V(U)) (U > /a) and
S0

max 7P (U, V(U);q, ~g,,0) + C*(9) = Jloga + 5 = max #(U,q.a,0)

U>Va U>Va
For U > 0.5 evidently D(U,V(U);4d) > 0. For 0.5 > U > y/a we have
D(U,V(U);68) > D(Va, V(Va); )
> D(Va,V(Va) kea®) > D(y/ac, V(y/ac); dc).
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So, checking numerically that D(y/a,,V(y/a,);0.) > 0 we finish the proof of
Proposition 4.
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