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Abstract

We prove that replica symmetric equations for the free energy and Edvards-
Anderson order parameter for the Sherrington-Kirkpatrick model with Gaussian
magnetic field hold above some line on the T" — h plane. This line coincides with
AT-line at the point h = 0 and behave similarly as T' — 0.

1 Introduction

Many interesting models in modern physics admit generalizations in which some
parameter, whose value in the initial model is, by its nature fixed, is regarded as a
free and is allowed, in particular, to take large values. It was found rather useful
to study the behaviour of the model in the asymptotic regime when the value of
such a parameter tends to infinity and to construct the limiting model or even the
corresponding asymptotic expansion.

The oldest and the best known example of such a parameter is the interaction
radius R. It was understood in 1950s and proved in 1970s (see [1]), that many
realistic models of statistical physics in the limit of large R are equivalent to the
Curie-Weiss model, which can be solved exactly. Hence it was naturally to expect
that realistic models of the spin glass theory can be studied in the limit R — oc
by using so-called Sherrington-Kirkpatrick (SK) model, introduced by Sherrington
and Kirkpatrick in 1975 ([2]) as a mean field model of spin glass.
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By using so-called replica trick, Sherrington and Kirkpatrick [2] found the following
expression for the mean free energy in the thermodynamic limit:

Bfsk = —(BJ)? /41— q) - \/%—w [ 1082 cosh(8.7q' 2+ ha)e™ P dudu(u), (2)

q= %/tanhQ(ﬁJql/Qu + ﬁhl)e_“2/2dud,u(h1), (3)



where 3 is the inverse temperature. However this ”SK solution” cannot be correct
in the most interesting low temperature region, since it does not satisfy general
and important requirements such as nonnegativity of the entropy and magnetic
susceptibility, some stability conditions etc.
The SK model has been considered in numerous physical papers (see e.g. book
[3] and references therein), in which the rich and complex structure of this model
was discovered and studied. The physical theory developed contains a number of
new fundamental concepts and facts, which have no analogs in nonrandom systems
and can be applied to a wide range of complex systems. According to the Parisi
theory [3], the SK model has some new type phase transition which occurs when we
cross so-called Almeida- Touless (AT) line T.(h) = 3. *(h) at the T — h -plane (here
and below T is the temperature and h is the variance of the external magnetic
field).
(Bed)?
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Above this line the free energy of the SK model has replica symmetric form (2), the
Edvards-Anderson parameter

cosh™(B.Jq"*u + ﬁchl)e_“2/2dudu(h1) =1 (4)
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becomes nonrandom in the thermodynamic limit and its limiting value ¢ is a solution
of equation (3). But below the AT line the Edwards-Anderson order parameter is
random and its distribution is a solution of rather complicated variational problem
which includes the nonlinear partial differential equation.

Unfortunately, all these results have been obtained by using so-called replica
trick, which is not rigorous from mathematical point of view. The problem of
rigorous justification of the Parisi theory is still open.

Let us mention some mathematical results known in this field. One of the first
results has been obtained in the paper [5]. It was shown that for T > J and zero
external field (h = 0) the partition function Zy of the SK model has the ”strong
selfaveraging property”: E(N~'logZy) = N~ 'log E(Zy) + o(1) where N (the
number of spins) tends to infinity. Thus there is no phase transition in the high
temperature region 7' > J. The main disadvantage of the method of this paper is
that it is not applicable to the model with external magnetic field and moreover
cannot be extended to low temperatures 7' < J. Similar result was obtained in [6]
for the case T' << J. The selfaveraging property of the free energy was proved in
[7]. Here the idea to use the martingale differences method was proposed. The same
idea has been used later to prove the selfaveraging of the free energies of a number
of others mean-field type models (see e.g.[16], [8]). In the paper [9] similar method
was used to obtain the large deviation type bounds for the free energy of the SK
and the Hopfield models.

Interesting rigorous results were obtained in the papers [11]-[13]. In these papers
it was proved that there exists some nonempty set of functions 0 < z(q) < 1 such
that the SK free energy can be expressed in terms of the solution of a non linear
partial differential equation, which is the same as that found by Parisi by means of
the replica trick.

Some rigorous results about validity of the replica symmetric solution (2), (3)
in the high temperature field were obtained resently in [14].



A method, relating the selfaveraging property of the Edwards-Anderson order
parameter and the replica symmetry solution for this model was proposed in [7],
[15]. Since this result is important for us we formulate it below

Theorem 1 Consider the SK model with the Hamiltonian (1) where J;;, 1<1i<
j < N are independent identically distributed random wvariables with zero mean,
variance J? and bounded third moments

E(lJ;]*) < C < 0 (6)

and h;, 1=1,...,N are independent Gaussian random variables with zero mean
and variance h?.

If the Edwards-Anderson parameter of the model (5) is selfaveraging, i.e. it
satisfies the condition

Ay = E{(qn — E{qn})?} =0 as N — oo, (7)

for values of J, 8, h belonging to some intervals J € (Jo,Jo + €), B € (Bo,Po + €)
and h € (hg, ho+¢€), € > 0, then the mean free energy E{fn} of the model coincides
in the thermodynamic limit N — oo with SK ("replica symmetric”) expression (2),

(3)-

Let us remark, that the statement of Theorem 1 is that the selfaveraging of the
Edwards- Anderson order parameter is a sufficient condition for the validity of the
replica symmetry solution. Since we know (see [3]) that the SK expression for the
free energy gives the negative entropy in the low temperature region and therefore
cannot be valid in this region, then we can rigorously derive from this theorem the
fact that the Edwards- Anderson order parameter is not selfaveraging in this region.

The main result of the present paper is

Theorem 2 Consider the SK model of the form (1) under the conditions of Theo-
rem 1. Let the following condition be fulfilled at some point (J, 3, h)

(BJ)?
C(B,h) =
where q is the solution of the replica symmetric equation (3). Then the mean free
energy E{fn} of the model coincides in the thermodynamic limit N — oo with SK
("replica symmetric”) expression (2), (3).

/1 df//dudﬂ(hl)e—uQ/Q COSh—4(5J(q§)1/2u+IBh12) <1 (8)
0

Remarks. 1. Comparing our result with AT-equation (4), one can see that they
coincide only if ¢ = 0, i.e. if h = 0 and § < J~!. But Theorem 2 implies also, that
replica symmetric equations hold for any A if 8 < J~1.

2. Another important corollary of Theorem 2 is that for any inverse temperature (3
the replica symmetric equations hold if the field is large enough h > h*(3), and the
behaviour of h*(3) as  — oo is similar to that for the AT-expression.

3. The method proposed in this paper is applicable also to the Hopfield model. By
using this method, the following result has been obtained for the Hopfield model
(similar results were obtained recently in [18], [19]).



Theorem 3 Consider the Hopfield model of the form:
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where f;‘ =+1,:=1,....N, p=1,...,p are independent random variables with
zero mean, Y* are independent Gaussian variables with zero mean and variance 1,
e and h' are positive parameters, and p — oo as N — oc so that p/N — «. Define
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Let the following condition be fulfilled at some point (v, B, €, h')

aBB)2 ve v /2
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where r, r(g), ¢ and m' are solutions of the replica symmetric system of equations

m! = F {f dvexpi\/g(_ﬁ—%) ¢1 tanh B(1/ar(e)v + (m' + hl)f%)} ’

g+ e2f(1 — ¢) (9)
(=Bl =g’

g =F {f ML\/Q(_;T) tanh? B(1/ar(e)v + (m' + hl)f%)} ,

[

with

2
7"(5):7"4—71_25??_(1) + &2

Then the variances of qn and rn wvanish as N — oo, there exist the limits as
N — oo for E{qn}, E{rn} and E{m}}, and these limits coincide with solutions
of the replica symmetric system (9).

2 Proof of the main result.

An important property, which we use to prove Theorem 2, is given by the lemma:

Lemma 1 Consider two sequences of convex random functions {fn(t)}5, and
{gn (1)} (90 <0, f} <0), the mean values of which have common limit.

lim E{f,(1)} = lim E{g.(1)} = f(1).

n—oo

If functions f,, and g, are selfaveraging, i.e.

Jim B{(fa(t) = E{Fa(0})?} = Jim B{(gu(t) = Bloa (D))} =0,



then for all point t, where f'(t) is continuous
limy, 00 B{f7, ()} = limp 00 E{g;, (1)} = f'(2),

limpy_ye0 E { (%fn(t) - f’(t))Q} 0, (10)

tiayoe B { (000) - 1)}

i.e. the derivatives f,(t) and g, (t) are also convergent, selfaveraging ones and have
common limit f'(t) for almost all t.

0,

Proof. The first line of (10) follows from the Griffitz lemma [20], according to
which the sequence of derivatives E{f] (t)} and E{g],(¢)} of the convergent sequence
of convex functions E{f,(t)} and E{g,(t)} converges to the derivative f’(¢) of the
limiting function f(¢) for all points ¢ of continuity of f’(¢). The proof of the self-
averaging properties (10) is based on the following inequalities resulting from the
convexity of fy,(t), gn(t):

fn(t)_fn(t_fl) fn(t+fl)_fn(t)

> fo(t) > :

€1 €1
gn(t) _gn(t_ 61) > g (t) S gn(t"‘fl) _gn(t)
€1 =n - €1 '

By using these inequalities and the selfaveraging properties of the functions f, (%)
and g, (t), one can easily prove (10).

Remark. We are going to apply this lemma to the sequences of free energies,
which are evidently convex functions with respect to the parameter J and h. But
since we cannot prove that the free energy of the SK model for any J, h has the
limit when N — oo we use the following trick. According to the Helly theorem,
one can chose the subsequence N,, such that there exists lim,_, ., E{f(Hn, (J,h))}.
We apply Lemma 1 to this subsequence to prove that its derivatives with respect
to J and h are selfaveraging for almost all h, J. But finally we prove that the limit
of this subsequence coincides with SK expression (2). And since it can be done for
any convergent subsequence, one can conclude that E{f(Hy(J,h))} (at least in the
field of parameters, which we study) has the limit equal to the SK expression (2).
However, to simplify notations everywhere below we omit the subindex n.

The other very important tool in our proof is the formula of integration by parts,
which is valid for any differentiable function ¢ and Gaussian variable X with zero
mean.

dp(X)

) (1)
The analogue of this formula for nongaussian case, which allows us to operate with
variables J;; like with Gaussian ones, is the following estimate, valid for any differ-
entiable functions p(N~1/2J), with J = {J;;}i<; and different J;,,, ..., Ji, j, which
satisfy condition (6)

E{Xp(X)} = E{X*}B{

0

o(o, N2 40N~ k+1/2),
(12)

E{Jijy - Jipinp(N"V23)} = T E{



To prove Theorem 2 we obtain the upper bound for Ay defined by formula (7).

Due to the symmetry of the initial Hamiltonian (1) with respect to variables o;, one
can see that

An = E{{01)? - (av —qn)} = E{{01)? - dy_1} + O(N 1), (13)
where
N
gy =N"" Z<0i>27 dn-1= -1 — Tn> dn = E{qn}.
i=2
Consider a system of N — 1 spins o9, ...,0x with a Hamiltonian obtained from (1)

by replacing the spin o7 with a continuously varying parameter +./7. We ”forget”
for a moment the term hjo; because it gives only some constant to be added to all
our computations. Thus we introduce two Hamiltonians of N — 1 spins:

H.(r) = — 55 Shims Jijoioj = Tis hioi — Y2 T, Jrioi, 10

H_ (1) = —ﬁ iz Jijoio; — Yy hioi + \/—\/% Yy Jiio.

Let Zy(1), Z_(7) be partition functions and (...)4,, (...)_r the Gibbs averages
corresponding to the Hamiltonians H, (7) and H_(7) respectively. Let us introduce
also

q4(1) = I\ ZfVZQ(Uz')iTa 4+(7) = ¢+ (1) — qy,
¢ (1) =NT'"SN (002, 4 (1) =q (1) —dy, (15)

qe(7) = N~ Z£2<0i>+‘r<0—i>fﬁ 4+(7) = q+(7) — qn-

The following lemma establishes the connections between the properties of Hy
and Hy (7).

Lemma 2 For almost all h, J the following relations hold for any 0 < 1 < 1:

E{(q+(n)"} = E{qx} +o(1),  (n=1,2), (16)

2B{N 231 5(6i6))17(00) 4+ (05)4-} = An +0(1),

(17)
E{N 2N _o(6i6))%,} = An +0o(1),
where Ay is defined by (7), and in addition
N
E{N7? > (6i6;)+rhih;} = o(1) (18)

1,j=2

with di =0; — <Uz‘>+7-.



Remarks. 1. Let us note that relation (18) means that for almost all J and h
N
N> " &ihi -0, as N — oo (19)
i=1

in the Gibbs measure and in probability.
2. By changing Ji; — —Ji; one can easily derive all statement of Lemma 2 for the
Hamiltonian H_ (7).

Proof. To prove Lemma 2 we use Lemma 1 for the sequences fn(Hy(J,h)) and
fn(Hy(13J,h)). It is evident that any their subsequences have the same limit,
therefore their derivatives are selfaveraging at the same h, J. Relations (10) imply
that

Bly Tty S hstosher = Bly T hstosherDl 0

Integrating by parts with respect to h;, we obtain

N

2B{N"? Y (6i0))4r{0i)+7(0j)++} = An(7) + o(1), (20)
i,j=2
where
An(1) = B{(g+(7) — E{g+(7)})}.
Similarly
N
BIN2Y (616,)2,} = An(r) + o(1). (21)
)

Integrating by parts the Lh.s. of (18) and using (20) and (21), we obtain (18).
Moreover, (20) and (21) and their analogs for Hy(.J, h) imply that

N
LB (H (r: W)} = BIBAN 2 Y (o107}, — 1) =
1,7=2
BIB{(an (7)) — 1} + BIBE(N 2 X5 y(66,)3, )+
28JE{N "> ¥0_0(6i01) 4 (00) - (04) 4} =
BIE{(an (1))” — 1} + 26T E{(a (7))} — 287 @x (7)) + o(1).

By the same way we obtain

d _
T EUNHN ()} = BIE{(a) — 1)} + 28T E{qy} —28Jqy +o(1)  (23)
Since, on the other hand, we have that

BN )} = W@y 1), BUNH (R} = BBy (r) — 1),

(24)
the first statement of Lemma 1 applied to the derivatives with respect to J and h
gives us (16). Combining (16) with (20) and (21), we prove (17).
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Lemma 2 is proved.

To proceed further we introduce the variable

1. Z(7)
=21 . 2
u(r) = 3los 73 (25)
One can easily see that
Zy(1)ePh — Z_(1)e= P
{on) = Zi(1)ePm + Z_(1)e=Bm = tanh(u(1) + Sh1) (26)
and similarly
oo B DZE i ()22 e+ 24 (V2 ()2 (1) _
N1 (Zy (1)ebht 4+ Z_ (1)eBhr)2
. e4u(1)+2ﬂh1
G+(1) (e2u(D+Bh1 | g=Bh1)?2 - (27)
o—28h1 o2u(1)

qi(l) (62u(1)+ﬂh1 + e—ﬁhl)Q + 2qi(1) (62u(1)+ﬂh1 + 6—,3}11)2 :

Hence to study the r.h.s. of (13) it would be very useful to study the behaviour of
the functionals

@, (p1,7) = E{q(7)p1(u(7))},
D_ (o, 7) = E{q_(7)a(u(r))}, (28)
Dy (3, 7) = E{qx(7)3(u(1))},

which are defined for any smooth enough functions ¢;(u), ¢a(u), ¢3(u), satisfying
the conditions:

||p1,2,3(w)|| = E1/2{¢%,2,3(U)} < o0,

(29)
19123l < oo, [[¢ 23(u)]l < oc.
To this end we compute
L (¢1,7) = E{% Siice N 732 00i(6i65) 14(0) o1 (u) }+ (30)

E{% YNy N Y2064 ((03) 47 + (0i) =) ¢ (u) }

Denote by I{l) and I§2) the first and the second terms in the r.h.s. of (30)
respectively. Then, using the integration by parts with respect to Jy; (11) or its
analogue (12) for nongaussian case, and the relations

d VT d

g 4T N gy (31)
d VT d
dJ1i<”'>7T__Nl/Qd—hi«”)iT’
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we obtain

1Y = 8 B{g1 (u) s i (616704 (07) 40} +
(32)
2]\7‘) E{¢1( ) 1] 2<UZU]>+T<UJ>+T(<UZ'>+T +(0i)-r)}-
On the other hand, on the basis of Lemma 2, we conclude that
BJ
B by 22h (6167)4{07) 41 (1)} = o)
0.
Using integration by parts with respect to h;, we have that
5}\]]2 E{¢1( ) 1] 2 d(fjl ((dio‘—]’>+7'<0i>+7)}+ (33)
B B{¢ (u) TN —0(6167) 42407) 1 (03) 4 — (00) =)} = o([|]])-
Hence, subtracting (33) from (32), we obtain
BJ)? ..
10 = CIE 5{(6167) r{0)aroi) )} + (1] ) (34)
Using a similar technique, we derive that
1 = G B (6161 (0747 (047 + {00)—r )1 () }+ )

CIERLG (g — q0)d, ()} + CEBISN ) 44 ((00) 40 + (00) ) ()}

On the other hand, since according to Lemma 1

E{(N~' L, hifoi)r — hB(1 = qy))*} = o(1),
E{(N~' 2%, hifoi)—r — hB(1 = qy))*} = o(1),

we have that

B> -
i B (N 3 hi{oi) 4 = (1)) ()} = o(l|n -
1=2

Integrating with respect to h;, we find

2N2 E{¢1( )2 zg 2<UZUJ>+T<UJ>+T(< Oi)4r —{0i) 1)+

BT Bl (a- — a2)dh ()} + CEBISN, q4 ((00) 40 + (00) =) B (w)} = o[ 6}]])-
(36)



Subtracting (36) from (35), we obtain

I§2) = (BJ\}]Z)Q E{qb'l(u) Z%:2<Uj>+'r(Uz'>f'r(<o"idj>+7)}+

(37)
GBI B4 q: ¢ (u)} + oll|1]) + o]} 1)-
Combining (34) and (37), we find
Lo (¢1,7) = 2B BINN5(07) 40 (00)—r ((66))r) B () }+ o
BD B {1 qudl ()} + ol||¢r]]) + oll|4])-
Finally, using the relation
LB (05)1(05) + ((6:6) 4-) 81 (W)} = B{dyd- o (u)}+ )

5B{d+(a- — ax)d (w)} + o[ 1)),

which one can derive integrating by parts with respect to h; the 1.h.s. of the identity

N N
B{q: N7 ' (u) Y hiloi) -} = B{g+ N7 ¢y (w)}E{D_ hifoi)—r} +o([|411]); (40)
i—2 i=2

we obtain
d _ (IBJ)QGN "
E(D+(¢la7—) = (7, 7)+ (41)
(B1)? E{G+4- (567 (u) + ¢1(w)} + o(||g1]]) + o(l4])-
By using a similar technique, one can find also that
d _ (/BJ)QGN U
%q)—((ﬁ?ﬂ—) - 2 Q)_(¢2’7—)—|- (42)
(BI)?E{d1q (545 (u) — dh(u)} + o(lpal|) + o] |¢5]]),
and ,
d _ (/BJ) GN Ui
gy 2 (91, 7) = TP (d5, 7)+ (43)

(BT)? E{q+d- (3¢5 (w) — 23(u))} + o(llgs]l) + o(ll511),

where the functionals ®_(¢o, 7) and @4 (¢3,7) are defined by the relations (28).
Let us introduce notations:

p+(7,u) = E{¢46(u(r) —u)},
p—(7,u) = E{¢-6(u(r) —u)},

(44)
p+(7,u) = E{d+o(u(r) — u)},

p(m,u) = E{qyq-0(u(r) —u)}.

10



Then relations (41)-(43) can be rewritten in terms of these functions as follows

5J qn

/¢1 uw)p4 (7, u)du = /(]5 w)p. (T, u)du+

(BJ)? /p(T,U)(§¢'1'( )+¢1(U))dU+0(|I¢1II)+0(|I¢'1||),

2—
2 [ patwrp- (o= P gy (s
(ﬁJ)Q/ (7,0) G 400 — ()t + (e l) + ol 1),
/¢3 piTudu— J2q /(]5 w)p+ (7, u)du+

(BJ) /p(T,U)(§¢§,'(U) — 2¢3(u))du + o(l|¢3]]) + o(l|d5]]).

(45)

Using the fact that the functions ¢, ¢2 and ¢3 are chosen arbitrarily, we derive
from (45) the partial differential equations

0 J)¥gy 0 1 9 0

O i) = PN O () 4 (B gl ) — () + d (),

0 J)%qy 02 1 9 0

L ru) = P T ) (59 () + p(r,) + o),
2~ 2

ptr) = PILAN T () 4 (815 oyl ) — 2p(r, ) + d(r,u),

(46)
where the remainder functions d; 2 3(7, u) admit the following bound, valid for any
smooth function ¢(u)

| [ diaa(rwtu)dul < o()(IIgll + 14'1) (47)
By the virtue of Lemma 2,

D1 (4,0) = E{$(0)4+(0)} = ¢(0)(E{q+(0)} —qn) = o(1)$(0).

Similarly
® (¢,0) = 0o(1)$(0), P+(¢,0) = o(1)$(0).

Therefore we can supply equations (46) by the initial conditions:

p+(0,u) = p—(0,u) = p+(0,u) = o(1)d(u). (48)

11



Then according to the standard theory of partial differential equations, the functions
p+(1,u), p—(7,u), p+(7,u) can be represented in the form

T 2
pi(r) = (027 [ de [ Kool — )G (€)= pplé )+
o(1) K, (u) + di (1, u),

2

p(re) = (07 [ de [ Bl — )Gz (E) + plé )+

(49)
o(1) K, (u) + dy(r, u),
2 T l ! 1 62 I !
pa(ro) = (B [ de [ du'Krclu— )G gznle,ul) = 2p(& )+
o(1) K+ (u) + da(r, u),
where the kernel K¢(u) has the form
exp{— 55—z }
Ke(u) = 2P0 ant (50)
BIan
functions 0?1’2’3(7', u) are defined by the formulae
d1j2’3(7', u) = / df/dulKT_g(u - u’)dl’g’g(u,)
0
and therefore satisfy the estimate
[ s wdta)dn < o)(I1gl] + 1)
Now, returning to formulae (26),(27) and denoting by
\ cAut28h
z/)l(u) = tanh (U + ,Bhl) (62u+ﬁh1 n e—ﬁhl)Q’
2 e 51
() = tank(u+ Bh1) sy (51)
2u

(&

_ 2
z/)ii(u) = tanh (u + /Bhl) (62u+ﬁh1 + e—ﬁh1)2’

we derive from (13) by using (26), (27) and (49) that

Ay = B0y} + 0(1) = ()7 [ dulr (wlp (1) + (o (1) + 2y (a)p (1, )]
2
02 [ de [ dupsta) [yl pend) — pl&ut))+
2
B2 [ de [ dupatu) [[au'Ks =) myp(Esnd) + pl&u))+

20677 [ at [ dus(o) [ au' 1l — (352006, 01) — 2p(e, ) + ol1) =

(BJ) /df/du/duw VK1 ¢(u —u)p(€, ) + o(1),
(52)

12



P(u) = %( T(w) + 4 (u) + 245 (u)) + 97 (u) — 9 (u) — 4ehs(u) = cosh™*(u + Bhy).
Therefore

Ay = (B)? [y dé [ du' Fe(u')p(€,u') + o(1) < (BJ)? [y Fe(0)dé [ du'|p(€, )| + o(1) <
(BJ)? [y Fe(0)deE{|d4 (€)]1d— ()]} + o(1) <
(B)? [y Fe(0)dEEY{(4+(€))*YEV2{(4- (€))%} + o(1) =

Ap - (BT)? [y Fe(0)d€ + o(1),

where .
o—h}/2h

Fe(u') = / du
e(u) o
The first inequality in the (53) holds due the fact that 0 < F¢(u') < F¢(0). The
second inequality is based on the representation (45), the third is just the Schwartz

inequality, and the last equality is based on Lemma 2 (note, that we have used also
the fact that |p(¢, )| does not depend on hy). Thus (53) implies that if

dh1 K1 _¢(u — u') cosh™ (u + Bhy).

Cn(B,h) = [y dEFe(0) =

%fol dfffdue_“2/2 cosh“%ﬁ(Wu) <1,

then Ay — 0 and, according to result Theorem 1, the replica symmetric equations
(2)-(3) hold. One can easily see that if 5J < 1, then Cy(8,h) < 1 for any h >
0. Thus, since the free energy is continuous with respect to h, we have replica
symmetric solution for h = 0 also. Moreover, one can see that for any g if h is large
enough, then we also have replica symmetric solution. But to prove the statement
of Theorem 2 we have to verify that one can replace gy in (54) by ¢- the solution
of equation (3).

To this end we fix 5 and chose h large enough to fulfil (54) (we mentioned above
that it is always possible). Then, decreasing h, we reach the point ho(3), defined as
the smallest upper bound of those ts, for which the replica symmetric solution does
not hold. We will prove now that in this case C(3, ho(/3)) defined by (8) is not less
then 1.

Indeed, since the mean free energy is the convex function with respect to h, its
derivative E{f\} = —hp(1 —qy) is decreasing function, and the therefore there
exists 6 > 0 such that

(54)

gn(h) > ]\}gﬂoo qn(ho(B) +0) = ¢

for any ho(8) —d < h < hg(B). Hence, if we assume that C(3,ho(8)) < 1, then
Cn(B,h) < 1 for ho(B) — 0 < h < ho(B). Thus, according to (53), the replica
symmetric solution holds for these h. But since this fact contradicts to the choice
of ho(B), one can conclude that C(53,ho(5)) > 1.
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Theorem 2 is proved.
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