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Abstract
We consider the adjacency matrix A of a large random graph and study

fluctuations of the function fn(z, u) = 1
n

∑n
k=1 exp{−uGkk(z)} with G(z) = (z−

iA)−1. We prove that the moments of fluctuations normalized by n−1/2 in the
limit n→∞ satisfy the Wick relations for the Gaussian random variables. This
allows us to prove central limit theorem for Tr G(z) and then extend the result
on the linear eigenvalue statistics Trϕ(A) of any function ϕ : R → R which
increases, together with its first two derivatives, at infinity not faster than an
exponential.

1 Introduction

Random graphs appear in different branches of mathematics and physics (see mono-
graphs [4, 12] and references there in). It is well known that they are closely connected
with the theory of random matrices, since there is one to one map between graphs with
n vertices and their adjacency matrices (recall that by the definition the entries aij of
the adjacency matrix are 1 if the vertices i and j are connected and aij = 0 other-
wise). Commonly, the set of n eigenvalues of the adjacency matrix is referred to as the
spectrum of the graph. The limit when the dimension of the matrix n (the number of
the vertexes of the graphs) tends to infinity provides a natural approximation for the
spectral properties of random graphs.

One of the classes of the prime reference in the theory of random graphs is the
binomial random graph originating by P. Erdős (see, e.g. [12]). Given a number
pn ∈ (0, 1), this family of graphs G(n, pn) is defined by taking the set of all graphs on
n vertices as the space of events with probability

P (G) = pe(G)
n (1− pn)(

n
2)−e(G), (1.1)

where e(G) is the number of edges of G. Most of the random graphs studies are devoted
to the cases where pn → 0 as n→∞.

Ensemble of random symmetric n× n adjacency matrices A corresponding to (1.1)
can be represented as A = {aij}ni,j=1 with aii = 0, and i.i.d.

aij =

{
1, with probability pn,
0, with probability 1− pn, (1.2)
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For any measurable function f we denote E{f(A)} the averaging with respect to all
random variables {aij}1≤i<j≤n and

Var{f(A)} := E{|f(A)− E{f(A)}|2}. (1.3)

The normalized eigenvalue counting measure of A is defined by the formula

Nn(λ) = n−1]{j : λ
(n)
j <λ}.

The ensemble of adjacency matrices (1.2) is a particular case of the random matrix
theory, where the limiting transition n→∞ is intensively studied during half of century
since the pioneering works by E. Wigner [23]. Spectral properties of random adjacency
matrix (1.2) were examined in the limit n → ∞ both in numerical and theoretical
physics studies [7, 8, 9, 18, 19, 20]. There are two major asymptotic regimes: pn � 1/n
and pn = O(1/n) and corresponding models can be called dilute random matrices and
sparse random matrices, respectively. The first studies of spectral properties of sparse
and dilute random matrices in the physical literature are related with the works [19],
[20], [18], where equations for the limiting density of states of sparse random matrices
were derived. In papers [18] and [10] a number of important results on the universality
of the correlation functions and the Anderson localization transition were obtained.
Unfortunately these results were obtained with the non rigorous replica and super
symmetry methods.

On mathematical level of rigor the eigenvalue distribution of dilute random matrices
was studied in [14]. It was shown that the normalized eigenvalue counting measure
of (npn)−1/2A converges in the limit npn → ∞ to the distribution of explicit form
known as the semicircle, or Wigner law [23]. In the paper [5] the adjacency matrix
of random graphs (1.1) with pn = pn−1 was studied. It was shown that for any
m there exist non random limiting moments limn→∞ n−1Tr Amn and these moments
can be found from the system of certain recurrent relations. The results of [5] was
generalized to the case of weighted random graphs in [15], where the resolvent of the
adjacency matrix was studied and equations for the Stieltjes transform g(z) of the
limiting eigenvalue distribution were derived rigorously (note, that the same equation
for gaussian weights were obtained in [19], [20], [18] by using the replica and the super
symmetry approaches.) It was shown in [15] that to prove the existence of the limit
limn→∞ gn(z) = g(z), where gn(z) is the Stieltjes transform of the normalized counting
function Nn(λ)

gn(z) =

∫
dNn(λ)

λ− z (1.4)

we need to study the behavior of the function

fn(z, u) =
1

n

n∑

k=1

e−uGkk(z), (1.5)

where
Gjk(z) = (z − iA)−1

jk , (1.6)
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The function fn(z, u) is defined for any u, z such that <z 6= 0. In what follows it will
be important for us that

||G|| ≤ |<z|−1,

n∑
j=1

|Gij|2 = (GG∗)ii ≤ ||G||2 ≤ |<z|−2 (1.7)

<(Ge, e)<z ≥ 0, ∀e ∈ Rn ⇒ |e−u(Ge,e)| ≤ 1, if u<z > 0.

Here and everywhere below ||A|| means the operator norm of the matrix A.
The following theorem (proven in [15]) gives us the limiting properties of fn(z, u)

of (1.5)

Theorem 1 Consider the adjacency matrix (1.2) with pn = p/n. Then for any u, z
such that u<z > 0 we have:
(i) the variance of the function fn(z, u) defined by (1.5) vanishes in the limit n→∞:

Var{fn(z, u)} ≤ C/(<z)2n, (1.8)

(ii) there exists the limit

lim
n→∞

E{fn(z, u)} = f(z, u), |E{fn(z, u)} − f(z, u)| ≤ Cu1/2/|<z|n1/2 (1.9)

(iii) if we consider a class H of functions which are analytic in z : <z > 0 and for
any fixed z : <z > 0 possessing the norm

||f(z)|| = max
u>0

|f(z, u)|√
1 + u

, (1.10)

then the limiting function is the unique solution in H of the functional equation

f(z, u) = 1− u1/2e−p
∫ ∞

0

dv
J1(2
√
uv)√
v

exp{−zv + pf(z, v)}, (1.11)

where J1(ζ) is the Bessel function

J1(ζ) =
ζ

2

∞∑

k=0

(−ζ2/4)k

k!(k + 1)!
. (1.12)

One can easily see that

− ∂

∂u
fn(z, u)

∣∣∣∣
u=0

=
1

n

n∑

k=1

E{Gkk(z)} =
1

n
E{Tr G(z)} = E{ign(−iz)},

where gn(z) is the Stieltjes transform (1.4) of the normalized counting measure Nn(λ).
Hence, Theorem 1 implies that for any z : =z 6= 0

lim
n→∞

E{|gn(z)− E{gn(z)}|2} = 0, (1.13)

i.e., the fluctuations of gn(z) vanish in the limit n→∞. And (1.9) implies that

g(z) = lim
n→∞

E{gn(z)} = − ∂

∂u
f(z, u)

∣∣∣∣
u=0

(1.14)
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Since the Stieltjes transform uniquely determines the measure, it follows from Theorem
1 that there exists the weak limit N(λ) of the normalized counting measure Nn(λ) and
the Stieltjes transform g(−iz) can be obtained as the first derivative of the solution of
(1.11). Using Theorem 1 it is not difficult to obtain the asymptotic expansions for g(z)
with respect to z−k. Since it is well known that the coefficients of this expansion are
the moments of the limiting normalized counting measure of eigenvalues, we obtain the
recurrent formulas for the moments. Besides, constructing the asymptotic expansion
of g(z) with respect to pk, it is easy to show that this expansion is convergent for p < 1.
Since in the case aij = 0, 1 the coefficients of this expansion are rational functions of
z, we can conclude that the limiting spectrum is pure point and consists of the spectra
of finite blocks only.

Results of [15] described above can be viewed as the analogs of the Law of Large
Numbers for linear eigenvalue statistics

Nn[ϕ] =
n∑
i=1

ϕ(λi) = Tr ϕ(A) (1.15)

corresponding to continuous test functions. Indeed, it follows from (1.13) – (1.14) that
for any continuous test function there exists

lim
n→∞

n−1Nn[ϕ] =

∫
ϕ(λ)dN(λ),

where N is the limiting normalized counting measure of eigenvalues. In the present
paper we consider the central limit theorem, the second element of the standard prob-
abilistic analysis of linear statistics. Similar questions for other ensembles of random
matrices were studied in [2, 3, 11, 13, 16, 21, 22]. Note, however, that for almost
all ensembles studied in the random matrix theory, like the Wigner ensemble, the
Marchenko-Pastur ensemble, the matrix models, etc the variance of linear statistics for
smooth functions is bounded (see [2, 3, 11, 13, 16, 21, 22]). Thus, for these ensembles,
one expects the Central Limit Theorem to be valid for statistics themselves, i.e., with-
out an n-dependent normalization factor in front. This has to be compared with the
case of i.i.d. random variables with finite second moment, where the variance of linear
statistics is always of the order O(n), n→∞ and the Central Limit Theorem is valid
for linear statistics divided by n1/2. As we will see below this is the case also for the
ensemble of sparse adjacency matrices (1.2) with pn = p/n.

The aim of the present paper is to study the fluctuations of linear eigenvalue statis-
tics for different classes of test functions. Following the method of [15] we study first
the functions fn(z, u) (defined in (1.5)) and prove that its fluctuations converges in
distribution to the complex Gaussian random variables.

Define the m-th generalized moment of the fluctuations of fn(z, u):

Mm,n(z1, u1; . . . ; zm, um) := n−m/2E

{
m∏
j=1

(
n∑

k=1

◦
e
−ujGkk(zj)

)}

= nm/2E

{
m∏
j=1

◦
fn(zj, uj)

}
, <zi 6= 0. (1.16)
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Here and below for any random variable ξ we denote

◦
ξ = ξ − E{ξ}

Theorem 2 Consider the adjacency matrix ensemble (1.2) with pn = p/n.
Let Mm,n(z1, u1; . . . ; zm, um) (m = 2, 3, . . . ) of (1.16) be the ”moments” of the fluc-
tuations of fn(z, u) of (1.5). Then for any m > 2 and z1, . . . , zm : <zj > 0 there
exists

Mm(z1, u1; . . . ; zm, um) := lim
n→∞

Mm,n(z1, u1; . . . ; zm, um). (1.17)

Moreover, the following recursion equations hold:

Mm(z1, u1; . . . ; zm, um)

=
m∑
j=2

M2(z1, u1; zj, uj)Mm−2(z2, u2; . . . ; zj−1, uj−1; zj+1, uj+1; . . . ; zm, um). (1.18)

Theorem 2 can be used to prove the central limit theorem for fluctuations of the
trace of G(z) of (1.6). Indeed, if we denote

M∗
m,n(z1, . . . , zm) := n−m/2E

{
Tr

◦
G(z1) . . .Tr

◦
G(zm)

}
, (1.19)

then it is easy to see that

M∗
m,n(z1, . . . , zm) =

∂m

∂u1 . . . ∂um
Mm(z1, u1; . . . ; zm, um)

∣∣∣∣
u1=···=um=0

.

Since Mm(z1, u1; . . . ; zm, um) are evidently analytic in each ui in some neighborhood of
ui = 0 and bounded uniformly in n for any fixed z1, . . . , zm (<zi 6= 0) (see Lemma 1
below), we pass to the limit n → ∞ in the above relations and obtain the following
theorem:

Theorem 3 Let G(z) be the resolvent (1.6) of the sparse adjacency matrix (1.2) with
pn = p/n. Then for any m > 2 and z1, . . . , zm : <zj > 0 there exists

M∗
m(z1, . . . , zm) := lim

n→∞
M∗

m,n(z1; . . . ; zm) (1.20)

and the following recursions hold:

M∗
m(z1, . . . , zm) =

m∑
j=2

M∗
2 (z1, zj)M

∗
m−2(z2, . . . , zj−1, zj+1, . . . , zm) (1.21)

Theorem 3 by a standard way implies the central limit theorem for vn(z) = n−1/2Tr
◦
G(z).

Indeed, if we put in (1.20) – (1.21) z1 = z2 = ... = zm = z, then Theorem 3 yields that
there exist limits of all moments of the complex random variable vn(z) and

M2m(z) := lim E{(n−1/2Tr
◦
G(z))2m} = (2m− 1)!!(M2(z))m
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This means that vn(z) converges in distribution to a complex Gaussian random variable
with zero mean and variance M2(z).

It is possible also to derive from Theorem 3 the central limit theorem for the linear
eigenvalue statistics of any function ϕ which grows not faster than an exponent at in-
finity and possesses two derivatives with the same property, i.e. there exists a constant
c > 0 such that ϕ, ϕ′, ϕ′′ ∈ L2(R, cosh−2(cλ)). Here and below

L2(R, w(λ)) =

{
f :

∫

R
|f(λ)|2w(λ)dλ <∞

}
(1.22)

Theorem 4 Consider the adjacency matrix (1.2) with pn = p/n and take any function
ϕ which possesses two derivatives such that ϕ, ϕ′, ϕ′′ ∈ L2(R, cosh−2(cλ)) with some

constant c > 0. Then the random variable n−1/2
◦
Nn[ϕ] converges in distribution to a

Gaussian random variable with zero mean and variance V [ϕ] := lim
n→∞

Var{n−1/2Nn[ϕ]}.

It is clear from the above discussion that Theorem 2 plays a key role in the paper,
because Theorems 3 and 4 are in fact corollaries of Theorem 2. The proof of Theorem 2
is based on a version of the cavity method which has been used many times for proving
different limiting relations of statistical mechanics and random matrices. The idea is
to compare the behavior of the object function (e.g. free-energy, resolvent, etc.) for
the complete system of random variables of the problem and the one with some subset
of random variables replaced by 0.

Let us try to explain the connections among the lemmas and propositions which are
necessary for the proof of Theorem 2. The proof should be seen as a logical sequence
of the following steps:

• We prove first bounds on Mm,n(z1, u1; . . . ; zm, um) uniform in (z1, u1; . . . ; zm, um)
(<zj ≥ C > 0) (see Lemma 1). One uses the norm estimates of the martingale
theory (Proposition 1), identities for the resolvent and the cavity method con-
sisting in studying the difference of the resolvent of the full matrix and the same
matrix without the first line and the first column.

• To prove the convergence of the variance of the sums of exponentials we need
to generalize Theorem 1 and to show the existence of the limits of exponentials
multiplied by some entire functions (cf Lemma 2 and Theorem 1). The proof of
Lemma 2 is based on the relations for some functions of A given by Proposition
2.

• Lemma 3 proves the self averaging properties and the existence of the limits for
the terms which will appear in the proof of CLT.

• Finally we prove that the ”moments” (1.16) as functions of ui satisfy the linear
integral equations with the kernel defined in terms of the function f of (1.11) (see
(2.54)). Since we are able to prove that these equations are uniquely solvable for
<z > M0 with some fixed M0, we finish the proof of Theorem 2.
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2 Proofs

We start from the lemma which gives bounds for Mm,n.

Lemma 1 For any m ∈ N and z1, . . . , zm : <zj > 0 there exists a constant Cm such
that uniformly in u1 . . . , um > 0

|Mm,n(z1, u1; . . . ; zm, um)| ≤ Cm (2.1)

The proof is based on the martingale property of the sequence of averages of the
functions of the random matrix A with respect to its rows or columns. The sequence
is ordered with respect to the index of the rows and the proposition below is based on
the sequence of the conditional expectations like in the proof of self-averaging of the
free-energy for disordered systems.

Proposition 1 Let ξα, α = 1, ..., ν be independent random variables, assuming values
in Rmα and having probability laws Pα, α = 1, . . . , ν and let Φ : Rm1 × · · · × Rmν → C
be a Borelian function. Set

Φα(ξ1, . . . , ξα) =

∫
Φ(ξ1, . . . , ξα, ξα+1, . . . , ξν)Pα+1(dξα+1) . . . Pν(dξν) (2.2)

so that Φν = Φ, Φ0 = E{Φ}, where E{. . . } denotes the expectation with respect to
the product measure P1 . . . Pν.

Then for any positive p ≥ 1 there exists C ′p, independent of ν and such that

E{|Φ− E{Φ}|2p} ≤ C ′pν
p−1

ν∑
α=1

E{|Φα − Φα−1|2p}. (2.3)

Moreover, if for every α = 1, . . . , ν there exists a ξα-independent Ψ(α) : Rm1 × · · · ×
Rmν → C such that

E{|Φ−Ψ(α)|2p} ≤ C <∞, α = 1, . . . , ν, (2.4)

then
E{|Φ− E{Φ}|2p} ≤ 2C ′pCν

p. (2.5)

Proof. The proof of (2.3) is given in [6]. Hence, we show only how to derive (2.4)
from (2.3). It follows from (2.2) and (2.4) that the integrals of Ψ(α) with respect to
Pα+1...Pν and PαPα+1...Pν coincide and we obtain

E{|Φα − Φα−1|2p} ≤ 22p−1(E{|(Φ−Ψ(α))α−1|2p}+ E{|(Φ−Ψ(α))α|2p})
≤ 22pE{|Φ−Ψ(α)|2p}.

This and (2.3) prove (2.5). �
Proof of Lemma 1 The Hölder inequality yields

|Mm,n(z1, u1; . . . ; zm, um)| ≤ nm/2
m∏
j=1

E

{∣∣∣∣
◦
fn(zj, uj)

∣∣∣∣
m}1/m

.
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Hence, it suffices to prove the bound for the r.h.s. of the above inequality. For this we
use Proposition 1 for the function Φ = nfn(z, u) with fn(z, u) of (1.5). According to
(2.5) and the approach of the cavity method for our purposes it is enough to choose the
functions Ψi independent from ξi = a(i) := (ai1, . . . , aii−1, 0, aii+1, . . . , ain) and prove
(2.4). Set

A(i) = A

∣∣∣∣
aij=0,j=1,...,n

, G(i)(z) = (z − iA(i))−1, (2.6)

Ψ(i) = nf (i)
n (z, u) :=

∑

k 6=i
e−uG

(i)
kk(z). (2.7)

By the symmetry reason it suffices to prove (2.4) for i = 1. We use the representations:

Gij(z) = G
(1)
ij (z)− (G(1)a(1))i(G

(1)a(1))j
z + (G(1)a(1), a(1))

, i, j 6= 1,

G1j(z) =
i(G(1)a(1))j

z + (G(1)a(1), a(1))
, j 6= 1, (2.8)

G11(z) = (z + (G(1)a(1), a(1)))−1,

where a(1) = (0, a12, . . . , a1n). The inequality |ex − ey| ≤ |x − y|max{|ex|, |ey|} and
(1.7) imply

∣∣∣∣∣
∑

k=2

(
e−uGkk − e−uG(1)

kk

)∣∣∣∣∣ ≤ u
∑

k=2

∣∣∣Gkk −G(1)
kk

∣∣∣ (2.9)

≤ u
∑

k

(G(1)a(1))k(G(1)a(1))k
|z + (G(1)a(1), a(1))| = u

(G(1)(z)a(1), G(1)(z)a(1))

|z + (G(1)a(1), a(1))| .

But the spectral theorem yields

(G(1)(z)a(1), G(1)(z)a(1)) =
n∑
j=1

|(ψ(j), a(1))|2
(λ(j) −=z)2 + (<z)2

=
1

<z<(G(1)a(1), a(1)),

where A(1)ψ(j) = λ(j)ψ(j). Thus, since by (1.7) <z<(G(1)a(1), a(1)) > 0, we have

(G(1)(z)a(1), G(1)(z)a(1))

|z + (G(1)a(1), a(1))| ≤ (<z)−1. (2.10)

Inequality (2.4) for our choice of Φ and Ψ(i) follows from (2.9) and (2.10). �
In the proof of Theorem 2 we will replace sometimes Mm,n by the moments inde-

pendent of {a1,j}nj=2. Set

M (1)
m,n(z1, u1; . . . ; zm, um) := nm/2E

{
m∏
j=1

◦
f

(1)

n (zj, uj)

}
(2.11)
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with f
(1)
n of (2.7). Note that (2.9) yields that for any m ∈ N and z1, . . . , zm : <zj > 0

there exists constants Cm, C
′
m such that uniformly in u1 . . . , um

|Mm,n(z1, u1; . . . ; zm, um)−M (1)
m,n(z1, u1; . . . ; zm, um)| ≤ Cmn

−1/2,

|M (1)
m,n(z1, u1; . . . ; zm, um)| ≤ C ′m. (2.12)

To study the behavior of some functions, depending on {a1,j}nj=2, we use the propo-
sition:

Proposition 2 Let E1{. . . } be the averaging with respect to {a1k}nk=2. Then we have
for any u, v > 0 and <z > 2

e−v(G(1)a(1),a(1)) = e−v
P
k G

(1)
kk a1k + rv, (2.13)

rv = v
∑

i6=j
G

(1)
ij a1ia1j +O

(
v2

∣∣∣∣
∑

i6=j
G

(1)
ij a1ia1j

∣∣∣∣
2)
, E

1/2
1 {|rv|2} ≤ Cvn−1/2.

Moreover, denoting Z = z + (G(1)a(1), a(1)), we have

E1

{ n∑
j=2

(e−uGjj − e−uG(1)
jj )

}
= E1

{ n∑

j,k=2

e−uG
(1)
jj (eu(G

(1)
jk )2/Z − 1)a1,k

}
(2.14)

+O

(
(u+ u2)eu

n

)

Proof. Note that since |<z|−1 ≤ 1/2, everywhere below we will replace |<z|−1 by a
constant. We need below the trivial bounds:

|ea − eb| ≤ |a− b|max{|ea|, |eb|}, |ea− eb− (a− b)| ≤ |a− b|2 max{|ea|, |eb|}. (2.15)

The first bound and the second line of (1.7) combined with (2.8) imply

|e−v(G(1)a(1),a(1)) − e−v
P
k G

(1)
kk a1k | ≤ v

∣∣∣∣
∑

k1 6=k2

G
(1)
k1k2

a1k1a1k2

∣∣∣∣

Averaging the square of the bound we obtain

E1{|rv|2} = v2E1

{ ∑

k1 6=k2,k3 6=k4

G
(1)
k1k2

G
(1)
k3k4

a1k1a1k2a1k3a1k4

}
(2.16)

≤ C1v
2

n2

∑

k1,k2

|G(1)
k1k2
|2 +

C2v
2

n3

∑

k1,k2,k3

G
(1)
k1k2

G
(1)
k1k3

+
C3v

2

n4

∣∣∣∣
∑

k1,k2

G
(1)
k1k2

∣∣∣∣
2

≤ C4v
2

n
.

Here we used the bounds valid for any matrix A:

∣∣∣∣
∑

j,k

Ajk

∣∣∣∣ ≤ n||A||,
∑

k

|Ajk| ≤ n1/2

(∑

k

|Ajk|2
)1/2

≤ n1/2||A||. (2.17)
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To prove (2.14) we show first that

∣∣∣∣
n∑
j=2

E1{(exp{−uGjj} − exp{−uG(1)
jj +

∑
(G

(1)
jk )2a1k/Z}

∣∣∣∣

:=

∣∣∣∣
n∑
j=2

E1{eaj − ebj}
∣∣∣∣ ≤ Cn−1/2eu. (2.18)

The second inequality of (2.15) and the bounds that |eaj | ≤ 1 and |ebj | ≤ eu/|<z|
3 ≤ eu

yield

∣∣∣∣
n∑
j=2

E1{eaj − ebj}
∣∣∣∣ ≤

∣∣∣∣
n∑
j=2

E1{aj − bj}
∣∣∣∣+

n∑
j=2

E1

{∣∣(eaj − ebj)− (aj − bj)
∣∣}

≤
∣∣∣∣

n∑
j=2

E1{aj − bj}
∣∣∣∣+ eu

n∑
j=2

E1

{|aj − bj|2
}

Then, similarly to (2.16) we have

∣∣∣∣
n∑
j=2

E1{aj − bj}
∣∣∣∣ = u

∣∣∣∣
n∑
j=2

E1

{ ∑

k1 6=k2

G
(1)
jk1
G

(1)
jk2
a1k1a1k2Z

−1

}∣∣∣∣

≤ uE
1/2
1

{∣∣∣∣
∑

k1 6=k2

(G(1)G(1))k1,k2a1k1a1k2

∣∣∣∣
2}

E
1/2
1 {Z−2} ≤ Cun−1/2.

Here we used also that in view of (1.7) <Z > <z ≥ 2. Moreover, similarly to (2.16),
we obtain

E1

{|aj − bj|2
} ≤ u2E1

{∣∣∣∣
∑

k1 6=k2,k3 6=k4

G
(1)
jk1
G

(1)
jk2
a1k1a1k2G

(1)
jk3
G

(1)
jk4
a1k3a1k4

∣∣∣∣
}
≤ Cu2n−2.

Summing with respect to j, we get (2.18). Besides, we have

n∑
j=2

(
exp{−uG(1)

jj +
∑

(G
(1)
jk )2a1k/Z} − exp{−uG(1)

jj }
)

=
n∑
j=2

e−uG
(1)
jj

∞∑
m=1

um(
∑

k(G
(1)
jk )2a1k)

m

m!Zm

=
n∑

j,k=2

e−uG
(1)
jj

∞∑
m=1

um(G
(1)
jk )2ma1k

m!Zm
+ rn,

where the remainder term rn admits the bound

E1{|rn|} ≤
n∑
j=2

∑

k1 6=k2

E1

{
|G(1)

jk1
|2|G(1)

jk2
|2a1k1a1k2

} ∞∑
m=2

um(
∑

k |G(1)
jk |2)m−2

2(m− 2)!Zm
≤ Cu2eu

n
.

The averaging here is similar to (2.16). Thus, we have proved (2.14)�
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Set (cf (1.12))

J̃1(ζ) =
∞∑

k=0

ζk+1

k!(k + 1)!
= −2iζ1/2J1(2iζ1/2) (2.19)

Below we will need the following properties of J̃1(ζ)

sup
|ζ|≤r
|J̃1(ζ)| ≤ J̃1(r), |J̃1(ζ)| ≤ |ζ|(1 + J̃1(|ζ|)), sup

|ζ|≤r
|J̃ ′′1 (ζ)| ≤ (1 + J̃1(r)) (2.20)

The following lemma is the analog of Theorem 1 for the function which will appear in
the proof of Theorem 3.

Lemma 2 For any u > 0, v ∈ C, <z > 2, and J1 of (1.12 the random variable

VJ,n(z, u, v) = n−1

n∑

j,k=1

e−uGkkJ̃1(vG2
kj) (2.21)

possesses the property:

Var{VJ,n(z, u, v)} ≤ n−1q(u, |v|)(1 + J̃ 2
1 (|v|)) (2.22)

where q(u, v) is a fixed polynomial. Moreover, there exists

VJ(z, u, v) := lim
n→∞

E{VJ,n(z, u, v)}. (2.23)

and

|rJ,n(z, u, v)| := |VJ,n(z, u, v)− VJ(z, u, v)| ≤ Cn−1/2(1 + J̃1(|v|)). (2.24)

Proof. According to Proposition 1 to prove (2.22) it is enough to prove that

∆(1) :=

∣∣∣∣
∑

j,k

(
e−uGkkJ̃1(vG2

kj)− e−uG
(1)
kk J̃1(v(G

(1)
kj )2)

) ∣∣∣∣ ≤ q1(u, v)(1 + J̃1(|v|)) (2.25)

with polynomial q1. Then q = q2
1. In view of the second bound of (2.20), (1.7), (2.8),

(2.9), and (2.10) we have

∆(1,1) :=

∣∣∣∣
∑

j,k

(
e−uGkk − e−uG(1)

kk

)
J̃1(vG2

kj)

∣∣∣∣

≤ Cu|v|(1 + J̃1(|v|))
∑

j,k

∣∣∣Gkk −G(1)
kk

∣∣∣ |G2
kj|

≤ Cu|v|J̃1(|v|)(G(1)(z)a(1), G(1)(z)a(1))

|z + (G(1)a(1), a(1))| ≤ Cu|v|(1 + J̃1(|v|)).

Moreover, by the third bound of (2.20), we can write

∆(1,2) :=

∣∣∣∣
∑

j,k

e−uG
(1)
kk

(
J̃1(vG2

kj)− J̃1(v(G
(1)
kj )2)

) ∣∣∣∣ ≤
∣∣∣∣v
∑

j,k

e−uG
(1)
kk

(
G2
kj −G(1)2

kj

) ∣∣∣∣

+C|v|2(1 + J̃1(|v|))
∑

j,k

|Gkj −G(1)
kj |(|Gkj|3 + |G(1)

kj |3) (2.26)
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Then denoting Σ1 the first sum in the r.h.s., we have in view of the first line of (2.8),
(1.7), and (2.10),:

|Σ1| =

∣∣∣∣
∑

j,k

(G(1)(z)a(1))k(G
(1)(z)a(1))j

|z + (G(1)a(1), a(1))|
(
Gjk(z) +G

(1)
jk (z)

) ∣∣∣∣

≤ (||G(z)||+ ||G(1)(z)||)(G(1)(z)a(1), G(1)(z)a(1))

|z + (G(1)a(1), a(1))| ≤ C.

To estimate Σ2 – the second sum in the r.h.s. of (2.26) we use that for any matrix M
if we consider the matrix M (2) = {|M |2i,j}ni,j=1, then

||M (2)|| ≤ sup
i

(∑
j

|Mij|2
)1/2

sup
j

(∑
i

|Mij|2
)1/2

≤ ||M ||2. (2.27)

Hence, the matrix with entries |Gkj|2 has the norm bounded by ||G||2 ≤ |<z|−2. Then
(2.27) and (2.10) imply for Σ2:

Σ2 ≤ |<z|−1
∑

j,k

|(G(1)(z)a(1))k| |(G(1)(z)a(1))j|
|z + (G(1)a(1), a(1))|

(
|Gjk(z)|2 + |G(1)

jk (z)|2
)

≤ 2|<z|−3 (G(1)(z)a(1), G(1)(z)a(1))

|z + (G(1)a(1), a(1))| ≤ C.

Thus, we have proved (2.25) and so (2.22).
To prove (2.23) – (2.24) it suffices to prove that for any m ≥ 2 there exists

Vm(u, z) = lim
n→∞

E

{
n−1

∑

j,k

e−uGkkGm
k,j

}
= lim

n→∞
E

{∑
j

e−uG11Gm
1,j

}
,

and ∣∣∣∣E
{∑

j

e−uG11Gm
1,j

}
− Vm(u, z)

∣∣∣∣ ≤ Cm(1 + u)/n1/2 (2.28)

To average with respect to a(1) we use the second and the third line of (2.8) and the
formulas:

R−m =

∫ ∞
0

dv
vm−1

(m− 1)!
e−Rv, (2.29)

e−uR = 1− u1/2

∫ ∞
0

dv
J1(2
√
uv)√
v

exp{−R−1v}, (2.30)
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which are valid for any <R > 0 and u ∈ C. Then we get

Tm(u) := E

{∑
j

e−uG11Gm
1,j

}
= EE1

{∫ ∞
0

dv1
vm−1

1

(m− 1)!
e−v1(z+(G(1)a(1),a(1)))

}

−u1/2EE1

{∫ ∞
0

∫ ∞
0

dv1dv2

vm−1
1 J1(2

√
uv2)√

v2(m− 1)!
e−(v1+v2)(z+(G(1)a(1),a(1)))

}

+EE1

{∑
j>1

(G(1)a(1))mj

∫ ∞
0

dv1
vm−1

1

(m− 1)!
e−v1(z+(G(1)a(1),a(1)))

}
(2.31)

−u1/2EE1

{∑
j>1

(G(1)a(1))mj ·
∫ ∞

0

∫ ∞
0

vm−1
1 J1(2

√
uv2)√

v2(m− 1)!

×e−(v1+v2)(z+(G(1)a(1),a(1)))

}
dv1dv2

= I1,m − u1/2I2,m(u) + I3,m(u)− u1/2I4,m(u).

Using (2.13) and averaging with respect to {a1,i}, we have

I1,m =

∫ ∞
0

dv1
vm−1

1

(m− 1)!
e−v1zEE1

{
exp{−v1

∑

l

G
(1)
ll a1,l}

}
+O(n−1)

=

∫ ∞
0

dv1
vm−1

1

(m− 1)!
e−v1zE

∏

l

(
1− p

n
+
p

n
e−v1G

(1)
ll

)
+O(n−1) (2.32)

=

∫ ∞
0

dv1
vm−1

1

(m− 1)!
e−v1zE{exp{−p+ pf (1)

n (z, v1)}}(1 +O(n−1)) +O(n−1)

=

∫ ∞
0

dv1
vm−1

1

(m− 1)!
e−v1ze−p+pf(z,v1) + r1,m,

where
|r1,m| ≤ Cmn−1/2,

and we used first (2.9)–(2.10) to replace f
(1)
n (z, v1) by fn(z, v1), and then (1.9) to replace

fn(z, v1) by f(z, v1). Similarly

I2,m =

∫ ∞
0

∫ ∞
0

dv1dv2

vm−1
1 J1(2

√
uv2)√

v2(m− 1)!
e−z(v1+v2)e−p+pf(z,v1+v2) + r2,m(u) (2.33)

|r2,m(u)| ≤ Cn−1/2.

Moreover, using (2.14) and (2.13), we obtain

I3,m =

∫ ∞
0

dv1
vm−1

1

(m− 1)!
e−v1zEE1

{∑

j,k

(G
(1)
jk )ma1k exp{−v1

∑

l

G
(1)
ll a1,l}

}
+ r′3,m

=

∫ ∞
0

dv1
vm−1

1

(m− 1)!
e−v1zE

{
p

n

∑

j,k

e−v1G
(1)
kk (G

(1)
jk )m exp{−p+ pf (1)

n (z, v1)}
}

+ r′′′3,m

= p

∫ ∞
0

dv1
vm−1

1

(m− 1)!
e−v1ze−p+pf(z,v1)Tm(v1) + r3,m, (2.34)

|r3,m(u)| ≤ Cmn−1/2.
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Here we used also the relation

E

{
1

n

∑

j,k

e−v1G
(1)
kk (G

(1)
jk )m

}
= Tm(v1) +O

(m
n

)
.

which can be proved similarly to (2.25). Repeating the argument used for I3,m, we
obtain

I4,m =

∫ ∞
0

∫ ∞
0

dv1dv2

vm−1
1 J1(2

√
uv2)√

v2(m− 1)!
e−z(v1+v2)e−p+pf(z,v1+v2)Tm(v1 + v2) + r3,m,

|r4,m(u)|2 ≤ Cmn−1/2. (2.35)

Collecting the above relations, we get in view of (2.31) the equation

Tm(u) = ϕm(u) + K̂m(Tm)(u) + rm(u),

|rm(u)| ≤ Cm(1 +
√
u)n−1/2,

where the function ϕm(u) is defined by the r.h.s. of (2.32) and (2.33) and the integral

operator K̂m is defined by the r.h.s. of (2.34) and (2.35). It is easy to see that for
<z > 2 the operator norm in the Banach space of the functions with the norm (1.10)
satisfies the inequality

||K̂m|| ≤ q < 1.

Hence, we get (2.28). Then summing with respect to m and taking into account the
bounds for the remainder terms, we obtain (2.23). �

The next lemma is a technical one. We will use it in the proof of Theorem 2 below.

Lemma 3 Set

D(1)(z, u) := n(fn(z, u)− f (1)
n (z, u)) = e−uG11 +

n∑
i=2

(
e−uGii − e−uG(1)

ii

)
. (2.36)

Then for <z > 2 we have

Var
{
E1

{
e−uG11(z)

}} ≤ n−1, Var
{
E1

{
D(1)(z, u)

}} ≤ euq1(u)n−1,

Var
{
E1

{
e−u1G11(z1)D(1)(z2, u2)

}} ≤ eu2q2(u1, u2)n−1. (2.37)

with polynomial q1, q2. Moreover, if we denote

Vn(z1, u1; z2, u2) = Cov1

{
e−u1G11(z1), D(1)(z2, u2)

}
, (2.38)

where Cov1{F1, F2} := E1{F1F2} − E1{F1}E1{F2}, then there exists

V (z1, u1; z2, u2) = lim
n→∞

Vn(z1, u1; z2, u2) (2.39)

and for any fixed z1, u1; z2, u2

|V (z1, u1; z2, u2)− Vn(z1, u1; z2, u2)| ≤ q3(u1, u2)eu2n−1/2, (2.40)

with polynomial q3.
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Proof of Lemma 3. The first bound of (2.37) can be proved similarly to (2.31) –
(2.34). Indeed, according to (2.30) we have

T0(u) := E1

{
e−uG11

}
= 1− u1/2E1

{∫ ∞
0

dv
J1(2
√
uv)√
v

e−v(z+(G(1)a(1),a(1)))

}
.

Then, averaging with respect to {a1,i} similarly to (2.32), we get

T0(u) = 1−√u
∫ ∞

0

dv
J1(2
√
uv)√
v

e−vze−p+pf(z,v) + r0, E{|r0|2} ≤ C/n.

To prove the second bound of (2.37) we use (2.14), which gives us that E1{D(1)−e−uG(1)
11 }

coincides with the r.h.s. of (2.14). Then (2.30) for ũ = i(G
(1)
jk )2u applied to the r.h.s.

of (2.14) yields:

E1{D(1) − e−uG(1)
11 } =

ip
√
u

n

∫ ∞
0

dv
∑

j,l

e−uG
(1)
jj G

(1)
jl

J1

(
2i
√
uvG

(1)
jl

)
√
v

e−zv−p+pf
(1)
n (z,v)

+O(q(u)eu/n1/2) =
p

2

∫ ∞
0

dv v−1VJ,n(z, u, uv)e−zv−p+pf(z,v) +O(ecu/n1/2)

with VJ,n of (2.21). Now the second inequality of (2.37) follows from Lemma 2, if we
use (2.30) to integrate the bound for rJ,n(z, u, uv) of (2.24) with respect to v. The third
bound of (2.37) follows from the first and the second one.

Relations (2.39) – (2.40) can be proved if we repeat the argument (2.31) – (2.35)
and then apply Lemma 2.�

Now we are ready to prove Theorem 2.

Proof of Theorem 2 Fix z1, . . . , zm such that <zi ≥ 2, i = 1, . . .m. We find first
M2,n. Using the symmetry of the problem and Lemma 1 it is easy to see that

M2,n = nE

{
◦
e
−u1G11(z1) ◦

f
(1)

n (z2, u2)

}
+ E

{
◦
e
−u1G11(z1) ◦

D
(1)

(z2, u2)

}

= T1 + Vn(z1, u1; z2, u2), (2.41)

where Vn(z1, u1; z2, u2) is defined in Lemma 3. Relations (2.8), (2.30), and (2.13) yield

T1 = −nu1/2
1

∫ ∞
0

dv
J1(2
√
u1v)√
v

e−z1vE
{ ◦
f

(1)

n (z2, u2)e−v(G(1)a(1),a(1))

}
(2.42)

= −nu1/2
1

∫ ∞
0

dv
J1(2
√
u1v)√
v

e−z1vE

{
◦
f

(1)

n (z2, u2)

(∏

k

e−vG
(1)
kk a1k + rv

)}

with rv of (2.13)

Since
◦
f

(1)

n (z2, u2) does not depend on {a1j}nj=2 we can average with respect to a(1)

and similarly to (2.16) obtain

|E1{rv}| ≤ C(v + v2)/n.
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We used that (2.17) and the first bound of (1.7) for ||G(1)||. The bound, the Schwarz
inequality, and Lemma 1 yield

∣∣∣∣E
{ ◦
f

(1)

n (z2, u2)rv

}∣∣∣∣ ≤ n−1|<z|−2E

{
|
◦
f

(1)

n (z2, u2)|
}
≤ C(v + v2)/n3/2.

Then, integrating with respect to v (recall that |J1| ≤ 1) and averaging
∏

k e
−vG(1)

kk a1k

over {a1k}, we get similarly to (2.32):

T1 = −nu1/2
1

∫ ∞
0

dv
J1(2
√
u1v)√
v

e−z1v−pE

{
◦
f

(1)

n (z2, u2)

(∏

k

e−vG
(1)
kk a1k

)}
+O

(
u

1/2
1

n1/2

)

= −nu1/2
1

∫ ∞
0

dv
J1(2
√
u1v)√
v

e−z1v−pE
{ ◦
f

(1)

n (z2, u2)epf
(1)
n (z1,v)

}
+O

(
u

1/2
1

n1/2

)
.

Writing f
(1)
n (z1, v) = E{f (1)

n (z1, v)}+
◦
f

(1)

n (z1, v), we have

T1 = −nu1/2
1

∫ ∞
0

dv
J1(2
√
u1v)√
v

e−z1v−pE
{ ◦
f

(1)

n (z2, u2)epE{f
(1)
n (z1,v)}+p

◦
f

(1)

n (z1,v)

}
+ r(2)

n

= n

∫ ∞
0

dvKn(u1, v; z1)E

{ ◦
f

(1)

n (z2, u2)

( ◦
f

(1)

n (z1, v) +O

(
(
◦
f

(1)

n (z1, v))2

))}
+ r(2)

n

=

∫ ∞
0

dvKn(u1, v; z1)M2,n(z1, v; z2, u2) + r(3)
n , (2.43)

where

Kn(u1, v; z1) := − pu
1/2
1

J1(2
√
u1v)√
v

e−z1v−peE{pf (1)
n (v,z)}

r(2)
n = O((u1/n)1/2)

r(3)
n = r(2)

n + n

∫ ∞
0

dvKn(u1, v; z1)E

{ ◦
f

(1)

n (z2, u2)O

(
(
◦
f

(1)

n (z1, v))2

)}

≤ Cn−1/2u
1/2
1 . (2.44)

The last bound follows from (2.12).
Thus, we obtain that

M2,n(z1, u1; z2, u2) =

∫ ∞
0

dvKn(u1, v; z1)M
(1)
2,n(z1, v; z2, u2) +

Vn(z1, u1; z2, u2) + r(3)
n (z1, u1; z2, u2) +O(n−1/2), (2.45)

where Vn(z1, u1; z2, u2) is defined in (2.38). Besides, using (1.5) and the inequality
|J1(x)| ≤ 1, we obtain that uniformly in u, v > 0

lim
n→∞

Kn(u, v; z) = −pu1/2J1(2
√
uv)√
v

e−zv−p exp{−E{pf(z, v)}} =: K(u, v; z), <z > 2,

and
|Kn(u, v; z)−K(u, v; z)| ≤ Cuv−1/2e−|<z|vn−1/2.
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Using the above bounds to replace Kn by K in (2.45) and (2.40) to replace Vn by V ,
we can write (2.45) in the form

M2,n(z1, u1; z2, u2) =

∫ ∞
0

dvK(u1, v; z1)M
(1)
2,n(z1, v; z2, u2) +

V (z1, u1; z2, u2) + r(4)
n (z1, u1; z2, u2) +O(n−1/2), (2.46)

|r(4)
n (z1, u1; z2, u2)| ≤ q(u1, u2)eu2n−1/2

with polynomial q. The inequality

|K(u, v; z)| ≤ pu1/2v−1/2e−<zv (2.47)

implies that there exists M0 > 2 such that for all z with <z > M0 the norm of the
integral operator K in the Banach space H (see (1.10)) satisfy the inequality

||K|| ≤ 1

2
. (2.48)

and so there exists the inverse operator (I −K)−1. But the problem is that the bound

for r
(4)
n above does not allow us to conclude that r

(4)
n ∈ H (recall that we fixe u2 and

consider r
(4)
n as a function of u1). This difficulty can be easily overcome if we consider

a new function

M̃2,n(z1, u1; z2, u2) = M2,n(z1, u1; z2, u2)− r(4)
n (z1, u1; z2, u2).

Then (2.46) takes the form

M̃2,n(z1, u1; z2, u2) =

∫ ∞
0

dvK(u1, v; z1)M̃
(1)
2,n(z1, v; z2, u2) +

V (z1, u1; z2, u2) +K(r(4)
n )(z1, u1; z2, u2) +O(n−1/2),(2.49)

and (2.47) yields
|K(r(4)

n )(z1, u1; z2, u2)| ≤ C
√
un−1/2.

Thus we can apply the (I −K)−1 to (2.49) and obtain that for any z : <z > M0 there
exists the limit

M2(z1, u1; z2, u2) :=

∫ ∞
0

(I −K)−1(u1, v; z1)V (z1, v; z2, u2) dv. (2.50)

But according to Lemma 1M2,n(z1, u1; z2, u2) is an analytic function bounded uniformly
in each compact in the right half plane of C. Hence, taking any bounded domain U
which contains some z: <z > M0, for any fixed u1, u2 we can choose a subsequence
M2,nk(z1, u1; z2, u2) which converges uniformly in z1 ∈ U to some analytic in U function.
But since for z: <z > M0 for any convergent subsequence there exists a unique limit
of M2,nk(z1, u1; z2, u2), defined by (2.50), on the basis of the uniqueness theorem we
conclude that for any z ∈ U there exists a limit of M2,n(z1, u1; z2, u2) and this limit for
<z > M0 is defined by (2.50). Hence we have proved (1.17) for m = 2.
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For arbitrary m we have instead of (2.41)

Mm,n := nm/2+1/2E

{
◦
e
−u1G11(z1)

m∏
j=2

(
n−1D(1)(zj, uj) +

◦
f

(1)

n (zj, uj)

)}
+O(n−1/2)

= nm/2+1/2E

{
◦
e
−u1G11(z1)

m∏
j=2

◦
f

(1)

n (zj, uj)

}

+
m∑
j=2

n(m−1)/2E

{
◦
e
−u1G11(z1)

D(1)(zj, uj)
∏

i6=j

◦
f

(1)

n (zi, ui)

}

+O(n−1/2) =: T1 +
m∑
j=2

T2j +O(n−1/2) (2.51)

Then, similarly to (2.43), we write T1 from the r.h.s. of (2.51) as

T1 =

∫ ∞
0

dvKn(u1, v; z1)Mm,n(z1, v; . . . ; zm, um)

+r(3)
n (z1, u1; . . . ; zm, um) +O(n−1/2q(u1, . . . , um)), (2.52)

where r
(3)
n admits the bound (2.44).

Since f
(1)
n does not depend on {a1j}nj=2 we can average with respect to these variables

and, using (2.37) write T2j in the form

T2j = E

{(
E1{e−u1G11(z1)D(1)(zj, uj)} − E1{e−u1G11(z1)}E1{D(1)(zj, uj)}

)

·
m∏

i=2,i6=j

◦
f

(1)

n (zj, uj)

}
= E{Vn(z1, u1; zj, uj)}E

{ m∏

i=2,i 6=j

◦
f

(1)

n (zj, uj)

}

+E

{ ◦
V n(z1, u1; zj, uj)

m∏

i=2,i 6=j

◦
f

(1)

n (zj, uj)

}
(2.53)

Using the Schwartz inequality and Lemmas 1,2, it is easy to obtain that the last term
in the r.h.s. of (2.53) is O(n−1/2). Hence, (2.51), (2.54) and (2.53) yield

Mm,n(z1, u1; . . . ; zm, um) =

∫ ∞
0

dvKn(u1, v; z1)Mm,n(z1, v; . . . ; zm, um)

+
m∑
j=1

E{Vn(z1, u1; zj, uj)}Mm−2,n(z2, v2; . . . ; zj−1, uj−1; zj+1, uj+1, . . . ; zm, um)

+O(n−1/2q1(u1, . . . , um)(eu2 + · · ·+ euj)), (2.54)

Then, using once more the argument, which we applied to (2.50), we can prove (1.17)
first for <z > 2 and then extend it to the whole right half plane of C. �

Proof of Theorem 4 We prove Theorem 4 in two steps: first for polynomial ϕ and
then extend the statement to any real valued functions ϕ, satisfying conditions of the
theorem. For polynomial ϕ we replace in Theorem 3 the product of traces of resolvent
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of A with different zj (see (1.19)) by the product of traces of ϕ1(A), . . . , ϕp(A) with
ϕ1, . . . , ϕm being some fixed polynomials. More precisely, we consider (cf (1.19))

Mp,n(ϕ1, . . . , ϕm) := n−m/2E
{

Tr
◦
ϕ1(A) . . .Tr

◦
ϕm(A)

}
= E

{ m∏
j=1

n−1/2
◦
N n[ϕj]

}

and prove that for any m and any fixed polynomial ϕ1, . . . , ϕm there exists the limit

lim
n→∞

Mm,n(ϕ1, . . . , ϕm) = Mm(ϕ1, . . . , ϕm) (2.55)

and

Mm(ϕ1, . . . , ϕm) =
m∑
j=2

M2(ϕ1, ϕj)Mm−2(ϕ2, . . . , ϕj−1, ϕj+1, . . . , ϕm). (2.56)

Then taking ϕ1 = · · · = ϕm = P we obtain that there exist the limits of all moments

of n−1/2
◦
N n[P ] and these moments are expressed in terms of the second moment by the

same way as for the Gaussian random variable.
Recall that Theorem 3 imply that the (2.55) and (2.56) are valid for ϕzj(λ) =

(iλ − zj)−1. We will replace ϕzj by the polynomial ϕj in (2.55) – (2.56) step by step,
starting from the last one ϕzm(λ). To this end we prove by induction with respect to
the polynomial degree k that if we replace ϕzm(λ) by a polynomial Pk(λ) of degree not
exceeding k, then (2.55) – (2.56) are valid.

For k = 0, 1
◦
N n[Pk] = 0 (recall that Ajj = 0), so (2.55) – (2.56) are trivial. Let us

assume that that we know (2.55) – (2.56) for ϕm(λ) = Pl(λ) with l ≤ k − 1 and prove
that they are valid for l = k. Consider

ϕm(λ) = ϕ(λ, zm, k) = −zmλk(iλ− zm)−1 (2.57)

= −(−i)kzm
(
zkm(iλ− zm)−1 +

k∑

l=1

C l
k(iλ− zm)l−1zk−lm

)
.

By the above representation and the induction assumption (2.55) and (2.56) are valid
for ϕm(λ) = ϕ(λ, zm, k) with any zm. Moreover, if we use the inequalities

E

{∣∣∣∣n−1/2
◦
N n[P ∗k ]

∣∣∣∣
m}

≤ C(m, k), P ∗k (λ) = λk, k,m ∈ N, (2.58)

E

{∣∣∣∣n−1/2
◦
N n[ϕ∗k]

∣∣∣∣
m}

≤ C(m, k)/|<z|, ϕ∗k(λ) = λk(iλ− z)−1,

combined with the Hölder inequality

|Mm,n(ϕ1, . . . , ϕm)| ≤
m∏
j=1

E1/m

{
|n−1/2

◦
N n[ϕj]|m

}
,

then, since P ∗k (λ)− ϕ(λ; zm, k) = −iϕ∗k+1(λ), we obtain

|Mm,n(ϕ1, . . . , P
∗
k )−Mm,n(ϕ1, . . . , ϕ(. ; zm, k))| (2.59)

= |Mm,n(ϕ1, . . . , ϕ
∗
k+1)| ≤ C

|<zm|1/m ,
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where C does not depend on n and zm. We will prove (2.58) later. Now let us use a
simple proposition

Proposition 3 Let the sequence of the functions {un(ζ)}∞n=1 converges point-wise to
the function u(z), as n→∞, in the domain <ζ > C, and for any fixed n un(ζ)→ u∗n,
as <ζ →∞, so that

|un(ζ)− u∗n| ≤ C0/|<ζ|α, α > 0. (2.60)

Then there exist the limits
lim
n→∞

u∗n = lim
<ζ→∞

u(ζ) (2.61)

Proof. Take any ε > 0 and ζε such that C0/|<ζε|α ≤ ε/4. Moreover, choose N such
that |un(ζε)− u(ζε)| ≤ ε/4 for any n ≥ N . Then for any n, n′ > N

|u∗n − u∗n′| ≤ |u∗n − un(ζε)|+ |u∗n′ − un′(ζε)|+ |un(ζε)− u(ζε)|+ |un′(ζε)− u(ζε)| ≤ ε.

Hence, there exists u∗ = limn→∞ u∗n. In addition, for any ζ and any ε > 0 one can
choose N such that |uN(ζ)− u(ζ)| ≤ ε/2 and |u∗N − u∗| ≤ ε/2. Then

|u(ζ)− u∗| ≤ |u(ζ)− uN(ζ)|+ |uN(ζ)− u∗N |+ |u∗N − u∗| ≤ ε+ C0/|<ζ|α.

Thus, there exists the second limit in (2.61) and it coincides with u∗.�
Now if for fixed z1, . . . , zm−1 we consider the functions un(zm) = Mm,n(ϕ1, . . . , ϕ(. ; zm, k)),

then (2.57) gives the point-wise convergence of un(zm) and (2.59) coincides with (2.60)
of Proposition 3 with u∗n = Mk,n(ϕ1, . . . , P

∗
k ). Applying the proposition we obtain that

(2.55) – (2.56) are valid if we replace the last function ϕm by any polynomial of degree
k.

Repeating the above procedure we replace step by step all ϕ1, . . . ϕm−1 by polynomi-
als of any fixed degree. As it was mentioned about this implies that for any polynomial

P n−1/2
◦
N n[P ] converges in distribution to a gaussian random variable with zero mean

and the variance from (2.62). Hence, by the standard argument we conclude that
uniformly in x varying in any compact of R

E

{
eixn

−1/2
◦
Nn[P ]

}
= e−x

2/2V (P ), V (P ) = lim
n→∞

Var{n−1/2Nn[P ]}. (2.62)

To finish the proof of CLT for polynomials we are left to prove (2.58). It is done in the
further proof of Theorem 4.

To extend CLT to a wider class of functions we use

Proposition 4 Let {ξ(n)
l }nl=1 be a triangular array of random variables, Nn[ϕ] =

n∑

l=1

ϕ(ξ
(n)
l ) be its linear statistics, corresponding to a test function ϕ : R→ R, and

Vn[ϕ] = Var{n−1/2Nn[ϕ]}

be the variance of Nn[ϕ]. Assume that
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(a) there exists a vector space L endowed with a norm ||...|| and such that Vn is
defined on L and admits the bound

Vn[ϕ] ≤ C||ϕ||2, ∀ϕ ∈ L, (2.63)

where C does not depend on n;
(b) there exists a dense linear manifold L1 ⊂ L such that the Central Limit Theorem

is valid for Nn[ϕ], ϕ ∈ L1, i.e., if

Zn[xϕ] = E

{
eixn

−1/2
◦
Nn[ϕ]

}

is the characteristic function of n−1/2
◦
N n[ϕ], then there exists a continuous quadratic

functional V : L1 → R+ such that we have uniformly in x, varying on any compact
interval

lim
n→∞

Zn[xϕ] = e−x
2V [ϕ]/2, ∀ϕ ∈ L1; (2.64)

Then V admits a continuous extension to L and Central Limit Theorem is valid for all
Nn[ϕ], ϕ ∈ L.

Proof. Let {ϕk} be a sequence of elements of L1 converging to ϕ ∈ L. We have

then in view of the inequality |eia − eib| ≤ |a − b|, the linearity of
◦
N n[ϕ] in ϕ, the

Schwarz inequality, and (2.63):

∣∣∣Zn(xϕ)− Zn(xϕ)|ϕ=ϕk

∣∣∣ ≤ |x|E
{∣∣∣∣n−1/2

◦
N n[ϕ]− n−1/2

◦
N n[ϕk]

∣∣∣∣
}

≤ |x|Var1/2{n−1/2Nn[ϕ− ϕk]} ≤ C|x| ||ϕ− ϕk||.
Now, passing first to the limit n→∞ and then k →∞, we obtain the assertion. �

Let us show now that hypothesis (a) and (b) of Proposition 4 are fulfilled in some
vector space. We fix some c > 0 and consider the vector space L of functions ϕ such
that ϕ, ϕ′, ϕ′′ ∈ L2(R, cosh−2(cλ)) (see (1.22)). Denote

||ϕ||2 =

∫
|ϕ′′(λ)|2 cosh−2(cλ)dλ+

∫
|ϕ′(λ)|2 cosh−2(cλ)dλ+

∫
|ϕ(λ)|2 cosh−2(cλ)dλ

It is evident that the space of all polynomials L∞ is dense subspace in L with respect
to the norm ||.||. Moreover, (2.62) proves (b). Hence we are left to check assumption
(a) of Proposition 4.

It is easy to see that if ϕ ∈ L then f(λ) = ϕ(λ) cosh−1(cλ) ∈ L2(R) and also
f ′, f ′′ ∈ L2(R) and

||f ||2L2(R) + ||f ′′||2L2(R) ≤ C||ϕ||2.
Hence it is enough to check that

Var{n−1/2Tr f(A)e±cA} ≤ C(||f ||2L2(R) + ||f ′′||2L2(R)). (2.65)

According to Proposition 1 (see (2.4))

E

{∣∣∣∣n−1/2
◦

Tr f(A)e±cA
∣∣∣∣
2m
}
≤ C2mE

{∣∣∣Tr (f(A)e±cA − f(A(1))e±cA
(1)

)
∣∣∣
2m
}
, (2.66)
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where A(1) is defined in (2.6). Note that to prove (2.65) it suffices to consider m = 1,
but we need other m to prove (2.58). Write

Tr
(
f(A)ecA − f(A(1))ecA

(1)
)

=

∫
dξf̂(ξ)Tr

(
e(iξ+c)A − e(iξ+c)A(1)

)
,

where f̂ is the Fourier transform of f . Then the Duhamel formula yields

∣∣∣∣Tr
(
e(iξ+c)A − e(iξ+c)A(1)

) ∣∣∣∣ =

∣∣∣∣
∫ 1

0

dt(iξ + c)Tr
(
et(iξ+c)A(A− A(1))e(iξ+c)A(1)(1−t)

) ∣∣∣∣

=

∣∣∣∣
∫ 1

0

dt(iξ + c)
n∑
j=1

(et(iξ+c)A)j1(e(iξ+c)A(1)(1−t)a(1))j

∣∣∣∣

≤ (e2tcAe1, e1)1/2e2cA(1)(1−t)a(1), a(1))1/2.

Here we used that

Tr
(
et(iξ+c)A(A− A(1))e(iξ+c)A(1)(1−t)

)
=
∑

j,k

(et(iξ+c)A)j1a1k(e
(iξ+c)A(1)(1−t))kj

+
∑

j,k

(et(iξ+c)A)jkak1(e(iξ+c)A(1)(1−t))1j.

The first some gives
∑n

j=1(et(iξ+c)Ae1)j(e
(iξ+c)A(1)(1−t)a(1))j where e1 = (1, 0, . . . , 0) and

the vector a(1) is defined in (2.8). The second sum can be estimated similarly, since

relations A
(1)
i1 = A

(1)
1i = 0 (i = 1, . . . , n) imply (e(iξ+c)A(1)(1−t))1i = 0 (i = 2, . . . , n).

Then the Schwarz inequality yields

Var{n−1/2Tr f(A)ecA} ≤ C2

(∫
|f̂(ξ)|(|ξ|+ c)dξ

)2

E1/2{(e2tcAe1, e1)2}

E1/2{(e2(1−t)cA(1)

a(1), a(1))2}. (2.67)

Using the Schwarz inequality once more and then the symmetry of the problem, we
obtain

E{(e2tcAe1, e1)2} ≤ E{(e4tcAe1, e1)} = E{Tr e4tcA}.
Similarly, using the Schwarz inequality and then the independence A(1) of a(1), we can
average with respect to a(1) to obtain

E{(e2(1−t)cA(1)

a(1), a(1))2} ≤ E{(e4(1−t)cA(1)

a(1), a(1))(a(1), a(1))}
≤ C(p+ p2)E{n−1Tr e4(1−t)cA(1)}+ C(p2 + p3)E1/2{n−1Tr e8(1−t)cA(1)}.

Since all entries of A and A(1) and A− A(1) are positive, we have for any t

E{Tr e4(1−t)cA(1)} ≤ E{Tr e4(1−t)cA} ≤ E{Tr e4cA}.

Moreover, according to the result of [5] we have for any m

E{n−1Tr A2m} ≤ Cm
0 m! ⇒ E{n−1Tr ecA} ≤ 2eC0c2/2.
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In addition the Schwarz inequality yields

(∫
|f̂(ξ)|(|ξ|+c)dξ

)4

≤
∫
|f̂(ξ)|2(|ξ|+c)4dξ

∫
(|ξ|+c)−2dξ ≤ C(||f ||2L2(R)+||f ′′||2L2(R)).

Summarizing the above inequalities, we obtain (2.65) and hence the assumption (a) of
Proposition 4. Then Theorem 4 follows from Proposition 4.

To prove (2.58) we use again (2.66), where for the first line of (2.66) f(λ) =
λk cosh−1(cλ) and for the second line f(λ) = λk cosh−1(cλ). Repeating the above
argument we obtain (2.66). �
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