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Abstract: We prove universality of local eigenvalue statistics in the bulk of the
spectrum for orthogonal invariant matrix models with real analytic potentials
with one interval limiting spectrum. Our starting point is the Tracy-Widom for-
mula for the matrix reproducing kernel. The key idea of the proof is to represent
the differentiation operator matrix written in the basis of orthogonal polynomi-
als as a product of a positive Toeplitz matrix and a two diagonal skew symmetric
Toeplitz matrix.
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1. Introduction and main results

In this paper we consider ensembles of n × n real symmetric (or Hermitian)
matrices M with the probability distribution

Pn(M)dM = Z−1
n,β exp{−nβ

2
TrV (M)}dM, (1)

where Zn,β is a normalization constant, V : R → R+ is a Hölder function
satisfying the condition

|V (λ)| ≥ 2(1 + ε) log(1 + |λ|). (2)

A positive parameter β here assumes the values β = 1 (in the case of real
symmetric matrices) or β = 2 (in the Hermitian case), and dM means the
Lebesgue measure on the algebraically independent entries of M . Ensembles of
random matrices (1) in the real symmetric case are usually called orthogonal,
and in the Hermitian case - unitary ensembles. This terminology reflects the
fact that the density of (1) is invariant with respect to orthogonal or unitary
transformations of matrices M .
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The joint eigenvalue distribution corresponding to (1) has the form (see [13])

pn,β(λ1, ..., λn) = Q−1
n,β

n∏

i=1

e−nβV (λi)/2
∏

1≤j<k≤n
|λi − λj |β , (3)

where Qn,β is a normalization constant. The simplest question in both cases (β =
1, 2) is the behavior of the Normalized Counting Measure (NCM) of eigenvalues.
According to [3,12], NCM converges weakly in probability to the non random
limiting measure N known as the Integrated Density of States (IDS) of the
ensemble. The IDS is absolutely continuous, if V ′ satisfies the Lipshitz condition
[18]. The non-negative density ρ(λ) is called the Density of States (DOS) of the
ensemble. The IDS can be found as a unique solution of a certain variational
problem (see [3,5,18]).

To study local regimes for ensembles (1) means to study the behavior of
marginal densities

p
(n)
l,β (λ1, ..., λl) =

∫

Rn−l
pn,β(λ1, ...λl, λl+1, ..., λn)dλl+1...dλn (4)

in the scaling limit, when λi = λ0 + si/n
κ (i = 1, . . . , l), and κ is a constant,

depending on the behavior of DOS ρ(λ) in a small neighborhood of λ0. If ρ(λ0) 6=
0, then κ = 1, if ρ(λ0) = 0 and ρ(λ) ∼ |λ − λ0|α, then κ = 1/(1 + α). The
universality conjecture states that the scaling limits of all marginal densities are
universal, i.e. do not depend on V and depend only on α and β.

For unitary ensembles all marginal densities can be represented (see [13]) as

p
(n)
l,β (λ1, ..., λl) =

(n− l)!
n!

det{Kn,2(λj , λk)}lj,k=1, (5)

where

Kn,2(λ, µ) =
n−1∑

l=0

ψ
(n)
l (λ)ψ(n)

l (µ). (6)

This function is known as a reproducing kernel of the orthonormalized system

ψ
(n)
l (λ) = exp{−nV (λ)/2}p(n)

l (λ), l = 0, ..., (7)

in which {p(n)
l }nl=0 are orthogonal polynomials on R associated with the weight

wn(λ) = e−nV (λ), i.e.,
∫
p

(n)
l (λ)p(n)

m (λ)wn(λ)dλ = δl,m. (8)

Hence, the problem to study marginal distributions is replaced by the problem
to study the reproducing kernel Kn(λ, µ) in the scaling limit.

This problem was solved in many cases. For example, in the bulk case (ρ(λ0) 6=
0) it was shown in [14] (see also [16]) that for a general class of V (the third
derivative is bounded in the some neighborhood of λ0)

lim
n→∞

1
nρ(λ0)

Kn,2(λ0 + s1/nρ(λ0), λ0 + s2/nρ(λ0)) = K(0)
∞,2(s1, s2),
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where K0(s1, s2) is a sin-kernel

K(0)
∞,2(s1 − s2) =

sinπ(s1 − s2)
π(s1 − s2)

. (9)

This result for the case of real analytic V was obtained also in [6]. Universality
near the edge, i.e. the case when λ0 is the edge point of the spectrum and
ρ(λ) ∼ |λ − λ0|1/2, as λ ∼ λ0, was studied in [6]. There are also results on
universality near the extreme point, where ρ(λ) ∼ (λ − λ0)2, as λ ∼ λ0 (see [4]
for real analytic V and [19] for general V ).

For orthogonal ensembles (β = 1 ) the situation is more complicated. Instead
of (6) we have to use the matrix kernel

Kn,1(λ, µ) =
(

Sn(λ, µ) Snd(λ, µ)
ISn(λ, µ)− ε(λ− µ) Sn(µ, λ)

)
. (10)

Here

Sn(λ, µ) = −
n−1∑

i,j=0

ψ
(n)
i (λ)(M(0,n))−1

i,j (nεψ(n)
j )(µ), (11)

where ψ(n)
i are defined by (7)-(8) and the matrix M(0,n) is defined as

Mj,l = n(ψ(n)
j , εψ

(n)
l ); M(0,∞) = {Mj,l}∞j,l=0; M(0,n) = {Mj,l}n−1

j,l=0, (12)

where ε is the integral operator with the kernel

ε(λ) =
1
2

sign(λ); εf(λ) =
∫
ε(λ− µ)f(µ)dµ. (13)

The symbol d in (10) denotes the differentiating, and ISn(λ, µ) can be obtained
from Sn by some integration procedure. Then similarly to the unitary case all
marginal densities can be expressed in terms of the kernel Kn1 (see [23]) The
matrix kernel (10) was introduced first in [11] for circular ensemble and then
in [13] for orthogonal ensembles. The scalar kernels of (10) could be defined
in principle in terms of any family of polynomials complete in L2(R, wn) (see
[23]), but usually the families of skew orthogonal polynomials were used (see
[13] and references therein). Unfortunately, for general weights the properties
of skew orthogonal polynomials are not studied enough. Hence, using of skew
orthogonal polynomials for general V rises serious technical difficulties.

The main technical obstacle to study the kernel (11) defined in terms of
orthogonal polynomials is that there is no uniform bound for ||(M(0,n))−1||.
Widom observed (see [24]) that if the potential V is a rational function, then
the question of bounded invertibility of M(0,n) can be reduced by the question
of invertibility of some matrix of fixed size, which depends on the degree of the
numerator and denominator of V (e.g. if V is polynomial of degree 2m, then
we should study some (2m − 1) × (2m − 1) matrix). In the paper [8] it was
shown that the Widom matrix is invertible in the case when (in our notations)
V (λ) = λ2m + n−1/2ma2m−1λ

2m−1 + . . . . This allows to prove bulk universality.
The same approach was used in [9] to prove edge universality and in [10] to prove
bulk and edges universality (including the case of hard edge) for the Laguerre
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type ensembles. But since small terms n−1/2ma2m−1λ
2m−1+. . . have no influence

on the limiting behavior of Kn(λ, µ) (see [14], [16]), these results in fact prove
universality for monomial V (λ) = λ2m. In the papers [21,22] universality in the
bulk and near the edges were studied for V being an even quatric polynomial.

In the present paper we prove universality in the bulk of the spectrum for
real analytic V with one interval support. Differently from the Widom approach
we show that the size of the matrix which we need to control depends only on
the number of intervals of σ, and in the one interval case it is enough to control
only some rank one matrix. This allow to generalize the method to a more wide
class of potentials V and to simplify the proof.

Let us state our main conditions.

C1. V (λ) satisfies (2) and is an even analytic function in

Ω[d1, d2] = {z : −2− d1 ≤ <z ≤ 2 + d1, |=z| ≤ d2}, d1, d2 > 0. (14)

C2. The support σ of IDS of the ensemble consists of a single interval:

σ = [−2, 2].

C3. DOS ρ(λ) is strictly positive in the internal points λ ∈ (−2, 2) and ρ(λ) ∼
|λ∓ 2|1/2, as λ ∼ ±2.

C4. The function

u(λ) = 2
∫

log |µ− λ|ρ(µ)dµ− V (λ) (15)

achieves its maximum if and only if λ ∈ σ.

Consider a semi infinite Jacoby matrix J (n), generated by the recursion relations
for orthogonal polynomials (8)

J
(n)
l ψ

(n)
l+1(λ) + q

(n)
l ψ

(n)
l (λ) + J

(n)
l−1ψ

(n)
l−1(λ) = λψ

(n)
l (λ), J

(n)
−1 = 0, l = 0, ....

(16)
It is known (see [2]) that under conditions C1 − C4 q

(n)
l = 0 and there exists

some fixed γ such that uniformly in k : |k| ≤ 2n1/2

∣∣∣∣J
(n)
n+k − 1− k

n
γ

∣∣∣∣ ≤ C
|k|2 + n2/3

n2
. (17)

Remark 1. The convergence J (n)
n+k → 1 (n→∞) without uniform bounds for the

remainder terms was shown in [1] under much more weak conditions (V ′(λ) is a
Hölder function in some neighborhood of the limiting spectrum).

Note also (see [2]) that under conditions C1− C4 the limiting density of states
(DOS) ρ has the form

ρ(λ) =
1

2π
P (λ)

√
4− λ2 1|λ|<2, (18)
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where the function P can be represented in the form

P (z) =
1

2πi

∮

L

V ′(z)− V ′(ζ)
(z − ζ)(ζ2 − 4)1/2

dζ =
1

2π

∫ π

−π

V ′(z)− V ′(2 cos y)
z − 2 cos y

dy. (19)

Here the contour L ⊂ Ω[d1/2, d2/2], and L contains inside [−2, 2]. If V is a
polynomial of 2mth degree, then it is evident that P (z) is a polynomial of (2m−
2)th degree, and conditions C3 guarantee that

|P (z)| ≤ C, z ∈ Ω[d1/2, d2/2], P (λ) ≥ δ > 0, λ ∈ [−2, 2]. (20)

An important role below belongs to the following two operators:

Pj,k =
1

2π

∫ π

−π
P (2 cos y)ei(j−k)ydy =

1
2πi

∮

|ζ|=1

P (ζ + ζ−1)ζj−k−1dζ (21)

and R = P−1

Rj,k = Rj−k =
1

2π

∫ π

−π

ei(j−k)xdx

P (2 cosx)
=

1
2πi

∮
ζ−1ζj−kdζ
P (ζ + ζ−1)

. (22)

It is important that

δ1 ≤ R ≤ δ2, δ1 = inf
σ
P−1(λ), δ2 = sup

σ
P−1(λ). (23)

Remark also that if we denote by J ∗ an infinite Jacobi matrix with constant
coefficients

J ∗ = {J∗j,k}∞j,k=−∞, J∗j,k = δj+1,k + δj−1,k, (24)

then the spectral theorem yields that P = P (J ∗), R = P−1(J ∗).
The main result of the paper is

Theorem 1. Consider the orthogonal ensemble of random matrices defined by
(1)-(3) with V satisfying conditions C1-C4 and even n. Then for λ0 in the bulk
(ρ(λ0) 6= 0) there exist weak limits of the scaled correlation functions (4) and
these limits are given in terms of the universal matrix kernel

K
(0)
∞,1(s1, s2) = lim

n→∞
1

nρ(λ0)
Kn,1(λ0 + s1/nρ(λ0), λ0 + s2/nρ(λ0)), (25)

where Kn,1(λ, µ) is defined by (10)-(11), and

K
(0)
∞,1(s1, s2) =

(
K

(0)
∞,2(s1 − s2) ∂

∂s1
K

(0)
∞,2(s1 − s2)∫ s1−s2

0
K

(0)
∞,2(t)dt− ε(s1 − s2) K

(0)
∞,2(s1 − s2)

)
,

with K(0)
∞,2(s1 − s2) of the form (9).

The proof of the theorem is based on the following result

Theorem 2. Under conditions of Theorem 1 for even n the matrix (M(0,n))−1

defined in (12) is bounded uniformly in n, i.e. ||(M(0,n))−1|| ≤ C where C is
independent of n and ||.|| is a standard norm for n× n matrices.
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The main idea of the proof of Theorem 2 is to consider the matrix V(0,∞)
j,k of the

operator n−1 d
dx in the basis {ψ(n)

k }∞k=0 and to prove that (see Lemma 1)

V(0,∞)
j,k = (PD)j,k + o(1), for |j − n|, |k − n| << n,

where
D = {Dj,k}∞j,k=−∞, Dj,k = δj+1,k − δj−1,k. (26)

This allows to construct a local inverse ofM(0,n) up to the rank one perturbation
that can be controlled (see Corollary 1).

The paper is organized as follows. In Section 2 we prove Theorems 1 and 2.
The proofs of auxiliary results are given in Section 3.

2. Proof of the main results

Proof of Theorem 2. According to the results of [2] and [15], if we restrict the
integration in (4) by |λi| ≤ L = 2 + d1/2, consider the polynomials {p(n,L)

k }∞k=0

orthogonal on the interval [−L,L] with the weight e−nV and set ψ
(n,L)
k =

e−nV/2p(n,L)
k , then for k ≤ n(1 + ε) with some ε > 0

sup|λ|≤L |ψ(n,L)
k (λ)− ψ(n)

k (λ)| ≤ e−nC , |ψ(n)
k (±L)| ≤ e−nC (27)

with some absolute C. Therefore from the very beginning we can take all integrals
in (4), (8), (13) and (12) over the interval [−L,L]. Besides, observe that since
V is an analytic function in Ω[d1, d2] (see (14)), for any m ∈ N there exists a
polynomial Vm of the (2m)th degree such that

|Vm(z)| ≤ C0, |V (z)− Vm(z)| ≤ e−Cm, z ∈ Ω[d1/2, d2/2]. (28)

Here and everywhere below we denote by C,C0, C1, ... positive n,m-independent
constants (different in different formulas).

Take
m = [log2 n] (29)

and consider the system of polynomials {p(n,L,m)
k }∞k=0 orthogonal in the interval

[−L,L] with respect to the weight e−nVm(λ). Set ψ(n,L,m)
k = p

(n,L,m)
k e−nVm/2

and construct M(0,n)
m by (12) with ψ

(n,L,m)
k . Then for any k ≤ n + 2n1/2 and

uniformly in λ ∈ [−L,L]

|ψ(n,L)
k (λ)− ψ(n,L,m)

k (λ)| ≤ e−C log2 n, |εψ(n,L)
k (λ)− εψ(n,L,m)

k (λ)| ≤ e−C log2 n

||M(0,n)
m −M(0,n)|| ≤ e−C log2 n.

(30)
The proof of the first bound here is identical to the proof of (27) (see [15]). The
second bound follows from the first one because the operator ε : L2[−L,L] →
C[−L,L] is bounded by L. The last bound in (30) follows from the first one and
the inequality valid for the norm of an arbitrary matrix A

||A||2 ≤ max
i

∑

j

|Ai,j | ·max
j

∑

i

|Ai,j |. (31)
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Remark also that if for arbitrary matrices A, B ||A−1|| ≤ C and ||A−B|| ≤ qC−1

with some 0 < q < 1, then we can write B = A(I − A−1(A − B)). Since
||A−1(A− B)|| ≤ q < 1, ||(I −A−1(A− B))−1|| ≤ (1− q)−1, (see any textbook
on linear algebra). Thus B is invertible and ||B−1|| ≤ C(1 − q)−1. Moreover,
||A−1−B−1|| ≤ q(1−q)−1C2. Due to this simple observation and (30), we obtain
that if ||(M(0,n)

m )−1|| ≤ C1, then ||(M(0,n))−1|| ≤ C1(1− C1e
−C log2 n)−1 ≤ 2C1

and
||(M(0,n))−1 − (M(0,n)

m )−1|| ≤ C2e
−C log2 n.

Using this bound combined with the first and the second bound of (30) we can
compare each term of the kernel Sn,m(λ, µ) constructed by formula (11) with new
orthogonal polynomials {p(n,L,m)

k }∞k=0 with the corresponding term of Sn(λ, µ).
Then, since by the result of [14]

|ψ(n)
k (λ)|2 ≤ Kn,2(λ, λ) ≤ nC, λ ∈ [−L,L],

and by the Schwarz inequality

|εψ(n)
k (λ)| ≤ (2L)1/2||ψ(n)

k ||2 ≤ (2L)1/2, λ ∈ [−L,L], (32)

where ||.||2 is a standard norm in L2[−L,L], we obtain that uniformly in λ, µ ∈
[−L,L]

|Sn,m(λ, µ)− Sn(λ, µ)| ≤ Cn4e−C log2 n ≤ e−C′ log2 n. (33)

Therefore below we will study M(0,n)
m and Sn,m(λ, µ) instead of M(0,n) and

Sn(λ, µ). To simplify notations we omit the indexes m,L, but keep the depen-
dence on m in the estimates.

Let us set our main notations. We denote by H = l2(−∞,∞) the Hilbert
space of all infinite sequences {xi}∞i=−∞ with the standard scalar product (., .)
and a norm ||.||. Let also {ei}∞i=−∞ be a standard basis in H, and I(n1,n2) with
−∞ ≤ n1 < n2 ≤ ∞ be an orthogonal projection operator defined as

I(n1,n2)ei =
{
ei, n1 ≤ i < n2,
0, otherwise. (34)

For any infinite or semi infinite matrix A = {Ai,j} we denote by

A(n1,n2) = I(n1,n2)AI(n1,n2),

(A(n1,n2))−1 = I(n1,n2)

(
I − I(n1,n2) +A(n1,n2)

)−1

I(n1,n2),
(35)

so that (A(n1,n2))−1 is a block operator which is inverse to A(n1,n2) in the space
I(n1,n2)H and zero on the (I − I(n1,n2))H. We denote also by (., .)2 a standard
scalar product in L2[−L,L].

Set V(0,∞) = {Vj,l}∞j,l=0, where

Vj,l = sign(l − j)(ψ(n)
j , V ′ψ(n)

l )2 =
2
n

{
(ψ(n)
j , (ψ(n)

l )′)2, j > l,

(ψ(n)
j , (ψ(n)

l )′)2 +O(e−C log2 n), j ≤ l.
(36)



8 M. Shcherbina

Here O(e−C log2 n) appears because of the integration by parts and bounds (27),
(30). Since (ψ(n)

k )′ = qke
−nV/2, where qk is a polynomial of the (k + 2m − 1)th

degree, its Fourier expansion in the basis {ψ(n)
k }∞k=0 contains not more than

(k + 2m− 1) terms and for |j − k| > 2m− 1 the jth coefficient is O(e−C log2 n).
Therefore for k ≤ n+ 2n1/2

n−1(ψ(n)
k )′ =

1
2

∑

j

Vj,kψ(n)
j +O2(e−C log2 n). (37)

Here and below we write φ(λ) = O2(εn), if ||φ||2 ≤ Cεn. The above relation
implies

1
2
ε

(∑

j

V(0,∞)
j,k ψ

(n)
j

)
= n−1ψ

(n)
k +O2(e−C log2 n). (38)

Hence, by (12), for 0 ≤ j, k ≤ n+ 2n1/2

1
2

(
M(0,∞)V(0,∞)

)
j,k

= δj,k +O(e−C log2 n). (39)

Thus,

1
2
M(0,n)V(0,n) = I(0,n) − µ(0,n)ν(0,n) + E(0,n), ||E(0,n)|| = O(e−C log2 n), (40)

where ν(0,n) is a matrix with entries equal to zero except the block (2m− 1)×
(2m − 1) in the right bottom corner and µ(0,n) in (40) has (n − 2m + 1) first
columns equal to zero and the last (2m− 1) ones of the form

µ
(0,n)
l,n−2m−1+k = Ml,n−1+k, k = 1, . . . , 2m− 1, l = 0, . . . , n− 1.

The relation (40) was obtained in [8].
If we transpose the matrices in (40) we get

1
2

(
V(0,n)M(0,n)

)
j,k

= δj,k −
2m−1∑

l=1

f
(l)
k δn−l,j + E(0,n)T , (41)

where f (1), . . . , f (2m−1) ∈ H(0,n) are some vectors, whose form is not important
for us.

The idea of the proof is to show that for |j − n| ≤ N := 4[log2 n]

Mk,j−1 −Mk,j+1 = Mj+1,k −Mj−1,k = 2Rk−j + ε′j,k,∞∑

k=0

|ε′j,k|2 ≤ Cm2N2n−1,
(42)

where Rk is defined by (22).
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Remark 2. To prove Theorems 1, 2 we need not to know Mj,k, but (42) allows
to find the limiting expressions for Mj,k up to some additive constant. Indeed, if
we know, e.g., Mn−1,n, we can find Mn+2j,n+1+2k, going step by step from the
point (n−1, n) to (n+ 2j+ 1, n+ 2k). Then, using the symmetry Mj,k = −Mk,j

we obtain Mn+2j,n+2k+1. Hence, since Mj,k = 0 for even j − k because of the
evenness, we find in such a way all Mj,k with |j − n|, |k − n| ≤ [2 log2 n]. Thus,
if we denote C(n) = Mn−1,n −M2 (see (44) for the definition of M2), then for
odd j − k we have

Mj,k = M∗j,k + εj,k, |ε2j−1,2k| ≤ C∗Nmn−1/2(1 + |j − n|+ |k − n|),
M∗j,k = Mk−j+1 − 1

2
((1 + (−1)j)M−∞ − (−1)jC(n), (43)

where for odd k Mk = 0 and for even k

Mk = (1 + (−1)k)
∞∑

j=k

Rj = P−1(2)− 1
2π

∫ π

−π

sin(k − 1)x dx
P (2 cosx) sinx

,

M−∞ = 2
∞∑

j=−∞
Rj = 2P−1(2),

(44)

and P is defined in (19). It is possible to show also that C(n) → 0, as n → ∞
(see [20]). For the case V (λ) = λ2p + o(1) expressions for Mj,k were found in [8].

Let us assume that we know (42) and obtain the assertion of Theorem 2. Define

Q(0,n)
j,k =

1
2

{
V(0,n)
j,k , for 0 ≤ j ≤ n− 2m, 0 ≤ k < n,

(R(−∞,n))−1D(−∞,n))j,k, for n− 2m < j < n, 0 ≤ k < n.
(45)

Remark that since (R)−1
j,k = Pj,k = 0 for |j − k| > 2m − 2, the standard linear

algebra yields that (R(0,n))−1 possesses the same property, i.e.,

(R(−∞,n))−1
j,k = 0, for |j − k| > 2m− 2⇒ Q(0,n)

j,k = 0, for |j − k| > 2m− 1. (46)

It follows from (41) that for 0 ≤ j ≤ n− 2m, 0 ≤ k < n

(Q(0,n)M(0,n))j,k = δj,k +O(e−C log2 n). (47)

For n− 2m < j ≤ n, 0 ≤ k < n, using (42) and (46), we get

(Q(0,n)M(0,n))j,k =
n−1∑

l=n−4m

(R(−∞,n))−1
j,l (D(−∞,n)M(0,n))l,k

=
n−1∑

l=n−4m

(R(−∞,n))−1
j,l (R(−∞,n))l,k +

n−1∑

l=n−4m

(R(−∞,n))−1
j,l ε
′
l,k

− (R(−∞,n))−1
j,n−1Mn,k = δj,k − (R(−∞,n))−1

j,n−1Mn,k + rj,k, (48)
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where ε′l,k are defined in (42). According to (42),

n−1∑

k=0

|rj,k|2 =
n−1∑

k=0

∣∣∣∣
n−1∑

l=n−4m

(R(−∞,n))−1
j,l ε
′
l,k

∣∣∣∣
2

≤ CN2m3n−1.

Hence,
n∑

j=n−2m

n−1∑

k=0

|rj,k|2 ≤ CN2m4n−1, (49)

and we obtain from (47)-(49)

Q(0,n)M(0,n) = I(0,n) −Π + Ẽ(0,n), ||Ẽ(0,n)|| ≤ CNm2n−1/2, (50)

where

Πx =
1
2

(x, µ1)a, with µ1k = Mn,k, a = (R(−∞,n))−1en−1. (51)

Note that by (46) a ∈ I(n−2m,n)H.
Now let x be an eigenvector of M(0,n), corresponding to the eigenvalue iε0

(||x|| = 1). Since by definition (45)

||Q(0,n)|| ≤ max{||V(0,n)||, 2||(R(0,n))−1||} ≤ CV ,
we have from (50)

x = (x, µ1)a+ y, y = iε0Q(0,n)x− Ẽ(0,n)x, ||y|| ≤ 2CV |ε0|. (52)

But since M(0,n) is a skew symmetric matrix of even dimensionality with real
entries, if iε0 is its eigenvalue, −iε0 is its eigenvalue too (if ε0 = 0, then this
eigenvalue has multiplicity at least 2). Thus, there exists an eigenvector x(1)

(||x(1)|| = 1) such that M(0,n)x(1) = −iε0x
(1) and (50) implies

x(1) = (x(1), µ1)a+ y(1), ||y(1)|| ≤ 2CV |ε0|. (53)

Now it is easy to see that for |ε0| ≤ C∗V with some C∗V , depending only on CV ,
relations (52) and (53) contradict to the condition

(x, x(1)) = 0

valid for any eigenvectors ofM(0,n), corresponding to different eigenvalues. Thus,
we conclude that ||(M(0,n))−1|| ≤ |C∗V |−1.

Since Π from (50) satisfy the relation

Π2 = λΠ, with λ = (µ1, a), (54)

(50) and the bound ||(M(0,n))−1|| ≤ |C∗V |−1 imply |1− λ| ≥ C∗V /2. Thus,

(M(0,n))−1 = Q(0,n) + (1− λ)−1ΠQ(0,n) + Ẽ(0,n)
1 , (55)

||Ẽ(0,n)
1 || ≤ CNm3/2n−1/2.
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To finish the proof of Theorem 2 we are left to prove (42). Define V∗ =
{V∗j,l}∞j,l=−∞ with V∗j,l = sign(l− j)V ′(J ∗)j,l, where J ∗ is defined in (24). Then
by the spectral theorem

V∗j,l = V∗j−l =
sign(l − j)

2π

∫ π

−π
dxV ′(2 cosx)ei(j−l)x. (56)

The key point in the proof of (42) is the lemma:

Lemma 1. Under conditions of Theorem 1

V∗ = PD = DP, (57)

where P and D are defined in (21) and (26) respectively.
Moreover, taking N = 4[log2 n], we have

Vj,k = DPj,k + ε̃j,k, |k − n| ≤ 2N, |j − n| ≤ 2N + 2m, (58)

where ε̃j,k = 0, if |j − k| > 2m− 1 and

|ε̃j,k| ≤ CNmn−1, if |j − k| ≤ 2m− 1. (59)

We will use also

Proposition 1. For any j : |j − n| < 4N

||εψ(n)
j ||22 ≤ Cn−1. (60)

Since ε is a bounded operator in L2[−2−d/2, 2+d/2], by (38), (58) and (38),
we have for |k − n| < 2N

1
2

∑

j

P(0,∞)
j,k

(
εψ

(n)
j−1 − εψ(n)

j+1

)
= n−1ψ

(n)
k + rk, (61)

where O2(.) is defined in (37) and for |k − n| < 2N we have by (60) and (59)

rk :=
1
2

∑

|j−k|≤2m−1

ε̃j,kεψ
(n)
j +O2(e−C log2 n) = O2(Nmn−3/2). (62)

Let us extend (61) to all 0 ≤ k <∞, choosing rk for |k−n| ≥ 2N in such a way
to obtain for these k identical equalities:

rk :=
∑

j>0

P(0,∞)
j,k

(
εψ

(n)
j−1 − εψ(n)

j+1

)
− 1
n
ψ

(n)
k = O2(1). (63)

Applying (P(0,∞))−1 to both sides of (61), we get

1
2

(
εψ

(n)
j−1 − εψ(n)

j+1

)
= n−1

∑

k>0

(P(0,∞))−1
k,jψ

(n)
k +

∑

k>0

(P(0,∞))−1
k,jrk = Σ1j+Σ2j .

(64)

Now we need some facts from the theory of Jacobi matrices.
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Proposition 2. Let J be a Jacobi matrix with entries |Jj,j+1| ≤ 1 + d1/4 and
Q be a bounded analytic function (|Q(z)| ≤ C0) in Ω[d1/2, d2/2]. Then:
(i) for any j, k

|Q(J )j,k| ≤ Ce−d|j−k|; (65)

(ii) if J̃ is another Jacobi matrix, satisfying the same conditions, then for any
j, k ∈ (n1, n2)

|Q(J )j,k −Q(J̃ )j,k| ≤ Ce−d|j−k| sup
i∈[n1,n2)

|Ji,i+1 − J̃i,i+1|

+ C(e−d(|n1−j|+|n1−k|) + e−d(|n2−j|+|n2−k|)); (66)

(iii) if Q(λ) > δ > 0 for λ ∈ [−2− d1/2, 2 + d1/2], then for i, j ∈ (n1, n2)

|(Q(J )(n1,n2))−1
j,k −Q−1(J )j,k|
≤ C min

{
e−d|n1−j| + e−d|n2−j|, e−d|n1−k| + e−d|n2−k|

}
, (67)

where C and d depend only on d1, d2, C0 and δ.

The proof of Proposition 2 is given at the end of Section 3.
Using (67) and (65) to estimate (P(0,∞))−1

j,k and (62)-(63) to estimate rk, it
is easy to obtain that uniformly in |j − n| ≤ N

||Σ2j ||2 ≤ C sup
|k−j|≤N

||rk||2 + Ce−cN sup
k
||rk||2 ≤ CNmn−3/2.

Besides, it follows from (67) that uniformly in |j − n| ≤ N

Σ1j −
∑

k>0

P−1
j,kψ

(n)
k (λ) = O2(e−cn).

Hence, we obtain

εψ
(n)
j−1 − εψ(n)

j+1 = 2n−1
∑

k>0

Rj,kψ
(n)
k +O2(Nmn−3/2). (68)

Multiplying the relation by nψ(n)
k , we get (42).

�

Corollary 1. Under conditions of Theorem 1

(M(0,n))−1
j,k = Q(0,n)

j,k +
1
2
ajbk +O(n−1/2 log6 n), (69)

where Q(0,n), a are defined by (45) and (51) respectively, and

bk = ((R(−∞,n))−1r∗)k, r∗n−i = Ri (70)

with Ri defined by (22).
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Proof of Corollary 1. Using (55) we have for any x ∈ I(n−2m,n)H, ||x|| ≤ 1

2(M(0,n))−1x = ((R(−∞,n))−1D(−∞,n))x+ (ν, x)a+O(n−1/2 log6 n), (71)

where a is defined by (51), ν is some unknown vector and we write x = O(εn),
if ||x|| = O(εn).

Making transposition of both sides of the last equation (recall that
M(0,n)T = −M(0,n) and D(−∞,n)T = −D(−∞,n)), we get for any x ∈ I(n−2m,n)H

− 2(M(0,n))−1x = −(D(−∞,n)(R(−∞,n))−1)x + (x, a)ν + O(n−1/2 log6 n).
(72)

Subtracting (71) from (72) we have

[(R(−∞,n))−1,D(−∞,n)]x = −(a, x)ν − (ν, x)a+O(n−1/2 log6 n), (73)

where the symbol [., .] means the commutator.
On the other hand, it is easy to see that

[D(−∞,n),R(−∞,n)]x = (x, r∗)en−1 + (x, en−1)r∗,

where r∗ is defined in (70). Hence,

[(R(−∞,n))−1,D(−∞,n)]x = −(x, a)b− (x, b)a,

with a, b defined in (51) and (70). Using the last relation and (73), we obtain
that for any x ∈ I(n−2m,n)H

(x, a)b+ (x, b)a = (a, x)ν + (ν, x)a+O(n−1/2 log6 n). (74)

Taking an arbitrary x such that (a, x) = (b, x) = 0, we get that

ν = λ1a+ λ2b+O2(n−1/2 log6 n)

Using this expression in (74), we obtain λ1 = O(n−1/2 log6 n), λ2 = 1−O(n−1/2 log6 n).
These relations combined with (71) prove (69).
�

Proof of Theorem 1. Substituting (69) in (11) and using (38), we obtain

Sn(λ, µ) = Kn,2(λ, µ) + nrn(λ, µ), (75)

where Kn,2(λ, µ) is defined by (6) and

rn(λ, µ) =
2m−1∑

j,k=−2m+1

rj,kψ
(n)
n−j(λ)(εψ(n)

n−j)(µ), |rj,k| ≤ C. (76)

According to the result of [23], to prove the weak convergence of all correlation
functions it is enough to prove the weak convergence of cluster functions, which
have the form

Rn(s1, . . . , sk) =
TrKn,1(λ0 + s1

nρ(λ0) , λ0 + s2
nρ(λ0) ) . . .Kn,1(λ0 + s1

nρ(λ0) , λ0 + s1
nρ(λ0) )

(nρ(λ0))k
,

(77)
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where the matrix kernel Kn,1(λ, µ) has the form (10) with

Sdn(λ, µ) = −n−1 ∂

∂µ
Sn(λ, µ), ISn(λ, µ) = n

∫
ε(λ− λ′)Sn(λ′, µ)dλ′.

Define similarly

Kdn,2(λ, µ) = n−1 ∂

∂µ
Kn,2(λ, µ), IKn,2(λ, µ) = n

∫
ε(λ− λ′)Kn,2(λ′, µ)dλ′

rdn(λ, µ) = −n−1 ∂

∂µ
rn(λ, µ), Irn(λ, µ) = n

∫
ε(λ− λ′)rn(λ′, µ)dλ′.

(78)

Lemma 2. Under conditions of Theorem 1 uniformly in |k− n| ≤ 2[log2 n] and
λ ∈ [−2 + δ, 2− δ]

|εψ(n)
k (λ)| ≤ C

[
n−1 + (1− (−1)k)n−1/2

]
. (79)

Moreover, for any compact K ⊂ R uniformly in s1, s2 ∈ K∣∣∣∣
(

∂

∂s1
+

∂

∂s2

)
Kn,2(λ0 + s1/n, λ0 + s2/n)

∣∣∣∣ ≤ C, (80)

n−1IKn,2(λ0 + s1/(nρ(λ0)), λ0 + s2/(nρ(λ0)))→ εK
(0)
∞,2(s1 − s2). (81)

Since in (75)-(76) rj,k = 0, if both j, k are odd, the bounds (79) and relations
(75)-(76) yield that uniformly in s1, s2 ∈ K∣∣∣∣
∣∣∣∣
1
n
Kn,1(λ0 +

s1

nρ(λ0)
, λ0 +

s2

nρ(λ0)
)− 1

n
K̃n,1(λ0 +

s1

nρ(λ0)
, λ0 +

s2

nρ(λ0)
)
∣∣∣∣
∣∣∣∣ ≤ o(1),

(82)
where

K̃n,1(λ, µ) =
(

Kn,2(λ, µ) Kdn,2Sn(λ, µ)
IKn,2(λ, µ)− ε(λ− µ) Kn,2(µ, λ)

)

Hence, we can replace Kn,1 by K̃n,1 in (77). Then, using integration by parts
and (80), we obtain that the integral

I(a, b) =
∫ b

a

. . .

∫ b

a

Rn(s1, . . . sk)ds1 . . . dsk

can be represented as a finite sum of the terms:

T (a, b; k1, . . . , kp; l1, . . . , lq) =
∫ b

a

. . .

∫ b

a

ds1 . . . dskF1(s1, s2) . . . Fk(sk, s1)
(
δ(sk1 − a)− δ(sk1 − b) + · · ·+ δ(skp − a)− δ(skp − b)

)
, (83)

where

Fi(s, s′) =
1

nρ(λ0)

{
IKn,2(λ0 + s

nρ(λ0) , λ0 + s′
nρ(λ0) )− ε(s1 − s2), i = l1. . . . , lq,

Kn,2(λ0 + s
nρ(λ0) , λ0 + s′

nρ(λ0) ), otherwise.

Using the result of [14] and (81) we can take the limit n → ∞ in each of these
term. Theorem 1 is proved.
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3. Auxiliary results

Proof of Lemma 1. According to the standard theory of Toeplitz matrices

V∗k,j = V∗k−j =
1

2π

∫ π

−π
ei(k−j)xṼ(x)dx,

where

Ṽ(x) = 2
∞∑

k=1

V ′k sin kx, V ′k =
1

2π

∫ π

−π
eikxV ′(2 cosx)dx, (84)

and to prove (57) it is enough to prove that

Ṽ(x) = 2 sinx · P (2 cosx). (85)

Replacing in (19) z → 2 cosx, 2 cos y → (ζ + ζ−1), dy → (iζ)−1dζ and using the
Cauchy theorem, we get

P (2 cosx) =
1

2πi

∮

|ζ|=1+δ

V ′(ζ + ζ−1)− V ′(2 cosx)
ζ + ζ−1 − 2 cosx

ζ−1dζ =

1
2πi

∮

|ζ|=1+δ

∑
V ′k(ζk + ζ−k)dζ

(ζ − eix)(ζ − e−ix)
=

1
2πi

∮

|ζ|=1+δ

∑
V ′kζ

kdζ

(ζ − eix)(ζ − e−ix)

=
∑

k

V ′k
sin kx
sinx

=
Ṽ(x)

2 sinx
.

Since V ′ is a polynomial of (2m − 1)th degree, V ′(J )j,k = 0 for |j − k| ≥ 2m
and

|V ′(J (n))j,k − V ′(J ∗)j,k| ≤ Cm max
|l−k|≤2m

{|J (n)
l − 1|}.

This bound implies (59). �
Proof of Proposition 2. To prove (60) we use the result of [7], according to

which for any δ > 0 and any λ ∈ (−2 + δ, 2− δ) and |k| ≤ 16[log2 n]

ψn+k(λ) =
2 + εn+k√

2π|4− λ2|1/4 cos
(
nπ

∫ 2

λ

ρ(µ)dµ+ kγ(λ) + θ(λ) + o(1)
)

+O(n−1),

(86)
where εn+k → 0 does not depend on λ, ρ(λ) is the limiting IDS, and γ(λ), θ(λ)
are smooth functions in (−2, 2).

Moreover, it follows from the result of [7] that there exists δ > 0 such that
for |λ∓ 2| ≤ δ

ψn+k(λ) = n1/6(B1 +O(k/n))Ai
(
n2/3

(
Φ±(λ∓ 2) + kγ

(1)
± (λ)/n

))
(87)

+n−1/6(B2 +O(k/n))Ai′
(
n2/3

(
Φ±(λ∓ 2) + kγ

(2)
± /n

))
+O(n−1),

where Ai is the Airy function, B1, B2 are some uniformly bounded constants,
Φ+, γ

(1)
+ , γ

(2)
+ are some functions analytic in (2− δ, 2 + δ), Φ−, γ

(1)
− , γ

(2)
− are some

functions analytic in (−2− δ,−2 + δ) and Φ′+(2) 6= 0, Φ′−(−2) 6= 0.
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Integrating (86) and (87), we get

|εψn+k(λ)| ≤ Cn−1/2, (88)

which implies (60).
�
Proof of Lemma 2. Integrating the first line of (86) between 0 and λ, we get

|εψ(n)
n−k(λ)− εψ(n)

n−k(0)| ≤ Cn−1.

Then, using the fact that (εf)(0) = 0 for even f , we get (79) for even k (recall,
that n is even). For odd k the above inequality imply

||εψ(n)
n−k||2 ≥ C|εψ(n)

n−k(0)|+ Cm2n−1.

Combining the above bounds with (88), we get (79).
Inequality (80) follows from the result [14] (see Lemma 7), according to which

∣∣∣∣
(

∂

∂s1
+

∂

∂s2

)
Kn,2(λ0 + s1/n, λ0 + s2/n)

∣∣∣∣ ≤ C
(
n−1|s1 − s2|2

+|ψ(n)
n (λ0+s1/n)|2+|ψ(n)

n−1(λ0+s1/n)|2+|ψ(n)
n (λ0+s2/n)|2+|ψ(n)

n−1(λ0+s2/n)|2
)
.

Since by(86) ψ(n)
n , ψ(n)

n−1 are uniformly bounded in each compact K ⊂ (−2, 2),
we obtain (81).

To prove (81) we use the Christoffel-Darboux formula, which gives us

n−1IKn,2(λ, µ) =
∫

|λ′−λ0|≥δ′
ε(λ− λ′)ψ

(n)
n (λ′)ψ(n)

n−1(µ)− ψ(n)
n−1(λ′)ψ(n)

n (µ)
λ′ − µ dλ′

+
∫

|λ′−λ0|≤δ′
ε(λ− λ′)ψ

(n)
n (λ′)ψ(n)

n−1(µ)− ψ(n)
n−1(λ′)ψ(n)

n (µ)
λ′ − µ dλ′ = I1 + I2 (89)

Integrating by parts (we use again that ψ(n)
k = (εψ(n)

k )′) and taking into account
(88), we get

|I1| ≤ Cδ−1n−1/2 + δ−2

∫ L

−L
(|εψ(n)

n (λ′)|+ |εψ(n)
n−1(λ′)|)dλ′

≤ Cδ−1n−1/2 + Cδ−2(||εψ(n)
n−1||2 + ||εψ(n)

n ||2) = O(n−1/2).

To find I2 observe that (86) yields for λ, µ ∈ (−2 + ε, 2− ε)

n−1Kn,2(λ, µ) = R(λ)
sin
(
nπ
∫ λ
µ
ρ(λ′)dλ′

)

n(λ− µ)
(1 + (λ− µ)φ1(λ, µ))

+n−1 cos
(
nπ

∫ λ

µ

ρ(λ′)dλ′
)
φ2(λ, µ)+n−1 cos

(
nπ(

∫ λ

2

+
∫ µ

2

)ρ(λ′)dλ′
)
φ3(λ, µ),
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where R and φ1, φ2, φ3 are smooth functions of λ. Hence, using the Riemann-
Lebesgue theorem to estimate integrals with φi(λ, µ), we obtain

I2 =
∫ nδ′

−nδ′
ds′ε(s1 − s′)R(λ0 + s′/n)

sin
(
nπ
∫ λ0+s′/n
λ0+s2/n

ρ(λ′)dλ′
)

s′ − s2
+ o(1).

Now we split here the integration domain in two parts: |s′| ≤ A and |s′| ≥ A
and take the limits n→∞ and then A→∞. Relation (81) follows.
�
Proof of Proposition 2. Assertion (i) follows from the spectral theorem, ac-

cording to which

Q(J )j,k =
1

2πi

∮

d(z)=d

Rj,k(z)Q−1(z)dz, (90)

and the bound, valid for the resolvent R(z) = (J − z)−1 of any Jacobi matrix
J , satisfying conditions of the proposition (see [17])

|Rj,k| ≤ C

d(z)
e−Cd(z)|j−k|, d(z) = dist {z, [−2− d1/2, 2 + d1/2]}. (91)

To prove assertion (ii) consider

J (n1, n2) = J (n1,n2)+J (−∞,n1)+J (n2,∞), J̃ (n1, n2) = J̃ (n1,n2)+J̃ (−∞,n1)+J̃ (n2,∞)

and denote

R(1)(z) = (J (n1, n2)−z)−1, R(2)(z) = (J̃ (n1, n2)−z)−1, R̃(z) = (J̃ −z)−1.

It is evident that for n1 ≤ j, k ≤ n2 and z 6∈ [−2, 2]

R
(1)
j,k(z) = (J (n1,n2) − z)−1

j,k, R
(2)
j,k(z) = (J̃ (n1,n2) − z)−1

j,k.

Then, using the resolvent identity

H−1
1 −H−1

2 = H−1
1 (H2 −H1)H−1

2 (92)

and (91), we get

|R(1)
j,k(z)−R(2)

j,k(z)| ≤ C sup
i∈[n1,n2)

|Ji,i+1 − J̃i,i+1|e
−d(z)|j−k|/2

d2(z)
.

On the other hand, by (92) and (91), we obtain

|Rj,k−R(1)
j,k | ≤ |Rj,n1+1R

(1)
n1,k
|+|Rj,n1R

(1)
n1+1,k|+|Rj,n2R

(1)
n2−1,k|+|Rj,n2−1R

(1)
n2,k
|

≤ C

d2(z)
(e−d(z)(|n1−j|+|n1−k|) + e−d(z)(|n2−j|+|n2−k|)).

Similar bound is valid for |R̃j,k −R(2)
j,k |. Then (91) and (90) yield (66).
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To prove assertion (iii) observe that xj = (Q(J )(n1,n2))−1
j,k is the solution of

the infinite linear system:
∑

Q(J )i,jxj = δi,k, i ∈ [n1, n2),∑
Q(J )i,jxj = ri :=

∑
Q(J )i,j(Q(J )(n1,n2))−1

j,k, i 6∈ [n1, n2).

Hence,
(Q(J )(n1,n2))−1

j,k = Q−1(J )j,k +
∑

i 6∈[n1,n2)

Q−1(J )j,iri

Now, using assertion (i), we obtain (67).
�
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