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We study the double scaling limit for unitary invariant ensembles of random matrices with non
analytic potentials and find the asymptotic expansion for the entries of the corresponding Jacobi
matrix. Our approach is based on the perturbation expansion for the string equations. The first
order perturbation terms of the Jacobi matrix coefficients are expressed through the Hastings-
McLeod solution of the Painleve II equation. The limiting reproducing kernel is expressed in terms
of solutions of the Dirac system of differential equations with a potential defined by the first order
terms of the expansion.

PACS numbers: Valid PACS appear here

1. INTRODUCTION

We consider the unitary invariant matrix model, de-
fined by the probability distribution

Pn(M)dM = Z−1
n exp{−nTrV (M)}dM, (1.1)

on the set of Hermitian n × n matrices. Here Zn is a
normalizing constant, V : R → R+ is a Hölder function
satisfying the condition

V (λ) ≥ (2 + ε) log(1 + |λ|). (1.2)

According to results of [5, 13], the Normalized Count-
ing Measure (NCM) of eigenvalues {λ(n)

j }nj=1 tends
weakly in probability, as n → ∞, to the non random
limiting measure N known as the Integrated Density of
States (IDS). The IDS is absolutely continuous if V ′ sat-
isfies the Lipshitz condition. The IDS can be found as
a unique solution of a certain variational problem [5, 13]
which imply, in particularly, that if V ′(λ) satisfies the
Lipshitz conditions on the support σ of limiting IDS, then
the density of IDS ρ(λ) is a solution of the following in-
tegral equation

V ′(λ) = 2
∫

σ

ρ(µ)dµ
λ− µ , σ = suppN . (1.3)

While IDS depends strongly on the form of V , the local
eigenvalue statistics is expected to be universal. Denote
by pn(λ1, ..., λn) the joint eigenvalue probability density.
It is known (see [15]) that

pn(λ1, ...λn) = Q−1
n

∏

1≤j<k≤n
(λj − λk)2

n∏

j=1

e−nV (λj),

(1.4)
where Qn is the respective normalization factor. Let

p
(n)
l (λ1, ..., λl) =

∫
pn(λ1, ..., λl, λl+1, ...λn)dλl+1...dλn

(1.5)
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be the lth marginal distribution density of (1.4). Uni-
versality of local eigenvalue statistics means that if we
consider some λ0 ∈ σ, then all marginal distribution den-
sities after a proper scaling (which depends on the behav-
ior of the limiting DOS ρ(λ) near the point λ = λ0) tend
to some universal limits.

The most known quantity probing universality is the
gap probability

En(∆n) = Pn{λ(n)
l /∈ ∆n, l = 1, ..., n}, (1.6)

where Pn{...} is defined by (1.1), and ∆n is an interval
of the spectral axis, whose order of magnitude is fixed
by the condition nN (∆n) ∼ 1. For unitary invariant
matrix models En(∆n) can be obtained as the Fredholm
determinant of a certain integral operator. This structure
of the gap probability is a consequence of the structure
of marginal densities, and the latter can be explained
by the link of matrix models with orthogonal polynomi-
als p(n)

l (λ), (l = 1, ...) on R associated with the weight
e−nV (λ). The link is provided by the formula [15]

p
(n)
l (λ1, ..., λl) =

(n− l)!
n!

det ||Kn(λj , λk)||lj,k=1, (1.7)

where

Kn(λ, µ) =
n∑

l=1

ψ
(n)
l (λ)ψ(n)

l (µ) (1.8)

is known as a reproducing kernel of an orthonormalized
system

ψ
(n)
l (λ) = e−nV (λ)/2P

(n)
l−1(λ), l ∈ N, (1.9)

in which P (n)
l (λ) is a polynomial of l-th degree with a pos-

itive coefficient in front of λl. This polynomial is uniquely
defined by the orthogonality conditions

∫
P

(n)
l (λ)P (n)

m (λ)e−nV (λ)dλ = δl,m. (1.10)

Formula (1.7) allows us to reduce the question on
the behavior of the scaled `th marginal density to the
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question of the existence of the limit of Kn(s, t) =
n−γKn(s/nγ , t/nγ) for a proper chosen γ.

In the bulk case (ρ(λ0) 6= 0) we choose γ = 1. Then
the limiting hole probability is the Fredholm determinant
of the integral operator, defined by the kernel sinπ(t1 −
t2)/π(t1−t2) on the interval (0, s). This fact for the GUE
was established by M. Gaudin in the early 60s [15]. The
same fact was proved recently in [8, 17] for certain classes
of matrix models.

The edge case of local eigenvalue statistics was studied
much later even for the GUE [11, 20]. It was found that
if we choose γ = 2/3, then for the edge points λ0 = ±a (
σ = [−a, a]) the hole probability (1.6) of the GUE in the
limit n→∞ is the Fredholm determinant of the integral
operator, defined on the interval (0, s) by the Airy kernel.
This fact for real analytic potentials in (1.1) was obtained
in [9]. In the paper [18] a more simple proof of the edge
universality for the same class of potentials was given.
An important advantage of the method of [18] is that it
can be generalized to a class of non analytic potentials.

Universality near the critical point (γ = 1/3) was stud-
ied first for V (λ) = 1

4λ
4 − λ2 by using the Riemann-

Hilbert approach in [4]. Here the asymptotic of the Ja-
cobi matrix coefficients and the limiting reproducing ker-
nel were found. The results of [4] after proper normal-
ization (see Remark 3 after Theorem 1) coincide with
results found below for more general V . The method of
[4] was generalized on a class of real analytic symmetric
potentials in [7] under additional assumptions that the
limiting spectrum σ consists of one interval and the den-
sity ρ(λ) behaves like a square root near the edge points
and has only one critical point inside σ (cf. condition
C3 below). But the asymptotic behavior of the Jacobi
matrix coefficients was not studied.

In the present paper we find the asymptotic behav-
ior of the Jacobi matrix coefficients and on the basis
of this result prove universality near the critical point.
We need not to assume that V (λ) is a real analytic
function. Our approach is based on the mathemati-
cal version of physical ideas proposed in [6]. The pa-
per [6] was devoted to the case of V being a polyno-
mial of minimal degree, which provides the condition
ρ(λ) ∼ (λ − 2)m−1/2 near the edge point λ = 2. It was
shown on the physical level of rigor that for these poten-
tials J (n)

n+k = 1+n−νfm(k/n1−ν), where ν = 2m/(2m+1)
and fm is a solution of some non linear differential equa-
tion of order 2m − 2. Moreover, then the resolvent
(J (n) − z)−1 for z = 2 + ζn−2/2m+1 can be written in
terms of the resolvent of the second order differential op-
erator − d2

dx2 + fm(x) at the point ζ. In fact Theorems
1 and 2 of the present paper establish similar facts for
the case of symmetrical potential with one critical point
under proper smoothness conditions on the potential V .

Let us state our main conditions.

C1. The support σ of the IDS of the ensemble consists
of a single interval: σ = [−2, 2].

C2. V (λ) is an even real locally Lipshitz function in
R.

C3. The DOS ρ(λ) has the form

ρ(λ) =
1

2π
λ2P0(λ)

√
4− λ2, λ ∈ [−2, 2], (1.11)

where P0(λ) > δ > 0 for λ ∈ [−2, 2] and there
exists ε > 0 such that P (5)(λ)0 ∈ L2[σε], where
σε = [−2− ε, 2 + ε].

C4. The function

u(λ) = 2
∫

log |µ− λ|ρ(µ)dµ− V (λ) (1.12)

achieves its maximum if and only if λ ∈ [−2, 2].

Remark 1. It follows from (1.3) that condition C3 im-
ply that V (6)(λ) ∈ L2[σε]. In fact Theorems 1 and 2
below can be proved if V (5)(λ) ∈ L2[σε], but the proof is
more complicated. Since V (4)(0) is used in the limiting
formulas for Theorem 1, it is natural to expect that the
existence of continuous V (4)(λ) in some neighborhood of
λ = 0 is a necessary condition for Theorem 1. Thus
condition C3 does not look too restrictive.

Remark 2. It is well known DOS ρ of the ensemble (1.1)
for σ = [−2, 2] has the form (1.11)

ρ(λ) =
1

2π
χσ(λ)P (λ)

√
4− λ2, (1.13)

where χσ(λ) is the indicator of σ and it follows from (1.3)
that P (λ) can be represented in the form

P (λ) =
1
π

∫

σ

V ′(λ)− V ′(µ)

(λ− µ)
√

4− µ2
dµ, (1.14)

So condition C3 means that ρ(λ), behaves like square root
near the edge points and has the second order zero at
λ = 0.

Define a semi infinite Jacobi matrix J (n), whose en-
tries J (n)

l−1,l = J
(n)
l,l−1 = J

(n)
l are defined by the recurrent

relations

λψ
(n)
l (λ) = J

(n)
l+1ψ

(n)
l+1(λ) + J

(n)
l ψ

(n)
l−1(λ), (1.15)

where l = 0, 1, . . . , J
(n)
0 = 0 and ψ

(n)
l is defined by

(1.9). The main result of the paper is

Theorem 1. Let conditions C1–C4 be fulfilled. Then for
any k : |k| ≤ n1/3 log2 n

J
(n)
n+k = 1 + s̃(−1)kn−1/3q(

k

n1/3
) +

k

8nP0(2)
+ rk, (1.16)

where q(x) is the Hastings-McLeod solution of the
Painleve II equation

q′′(x) =
1

2P0(0)
xq(x) + 2q3(x), (1.17)
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which is uniquely defined (see [12]) by the asymptotic con-
ditions

lim
x→+∞

q(x) = 0, lim
x→−∞

q(x)
(−x)1/2

=
1

2P 1/2
0 (0)

, (1.18)

P0(λ) is defined by (1.11), s̃ = sign(1−J (n)
n ) and remain-

der terms rk satisfy the bounds

|rk| ≤ Cn−1
(

(k/n1/3)2 + 1
)
, (1.19)

where C is some absolute constant.

Remark 3. The result of Theorem 1 coincides with
asymptotic of the Jacobi matrix coefficients obtained in
[4] for the case V (λ) = λ4/4 − λ2. Indeed, since coef-
ficients Rk of [4] in our terms are J2

k (compare the re-
cursion relations (1.15) of [4] with (1.15) of the present
paper) taking into account that P0(x) ≡ 1 for V (λ) =
λ4/4− λ2, from formula (1.16) above we obtain:

Rn+k = 1 + 2s̃(−1)kn−1/3q(
k

n1/3
)

+n−2/3q2(
k

n1/3
) +

k

4n
+ r′k,

Now, choosing as in [4] y = 2−1/3k/n1/3 and denoting
u(y) = 21/3q(2−1/3y), we obtain (1.45)-(1.48) of [4] with
c0 = 21/3, c1 = 22/3, c2 = 2−2/3/2 from (1.17)-(1.18).
The only difference is that in [4] it is proved that s̃ =
(−1)n+1, while the result of Theorem 1 does not justify
the sign of s̃. But it is proved in Theorem 2 that the sign
of s̃ has no influence on the behavior of the marginal
densities in the double scaling limit.

To prove universality of local eigenvalue statistics we
study

Kn(t1, t2) = n−1/3Kn(t1n−1/3, t2n
−1/3). (1.20)

Theorem 2. Under conditions C1–C4 for any l ∈ N
there exists a weak limit of the marginal density (1.5)

lim
n→∞

(2n2/3)lp(n)
l (2t1/n1/3, . . . , 2tl/n1/3)

= det{K(ti, tj)}li,j=1, (1.21)

where

K(t1, t2) =
Ψ1(0; t1)Ψ0(0; t2)−Ψ0(0; t1)Ψ1(0; t2)

π(t1 − t2)
,

(1.22)

and Ψ(x, t) = (Ψ0(x; t),Ψ1(x; t)) is a solution of the
Dirac system of equations

AΨ(x, t) = tΨ(x, t),

A =
(

0 1
−1 0

)
d

dx
+
(

0 q(x)
q(x) 0

)
, (1.23)

with q(x) defined by (1.17)-(1.18), and Ψ(x, t) chosen
from the asymptotic conditions

lim
x→−∞

|Ψ(x; t)| = 0, lim
x→∞

|Ψ(x; t)| = 1. (1.24)

Corollary 1. Under conditions C1–C4 the gap probabil-
ity (1.6) for ∆n = [n−1/3a, n−1/3b] converges, as n→∞,
to the Fredholm determinant of the integral operator de-
fined in [a, b] by the kernel (1.21):

lim
n→∞

En([an−1/3, bn−1/3]) = det(I −K([a, b])). (1.25)

The paper is organized as follows. In Section 2 we
prove Theorems 1 and 2. The proofs of the most of aux-
iliary results are given in Section 3. Some auxiliary re-
sults which have no direct links with matrix models (some
properties of the Hastings-McLeod solution, bounds for
smooth functions of Jacobi matrices etc.), are proven in
Appendix.

2. PROOFS OF THEOREMS 1, 2

Proof of Theorem 1. The main idea of the proof is to
use the perturbation expansion of the string equations:

J
(n)
k V ′(J (n))k,k−1 =

k

n
, (2.1)

which we consider as a system of nonlinear equations
with respect to the coefficients J (n)

k . Here and below we
denote by J (n) a semi-infinite Jacobi matrix, defined in
(1.15). Relations (2.1) can be easily obtained from the
identity

∫ (
e−nV (λ)P

(n)
k−1(λ)P (n)

k (λ)
)′
dλ = 0.

To make the idea of the proof more understandable we
first explain how does the method work in the simplest
case V (λ) = λ4/4 − λ2. In this case the sting equation
(2.1) has the form

(J (n)
n+k)2

(
(J (n)
n+k−1)2 + (J (n)

n+k)2 + (J (n)
n+k+1)2

)
− 2(J (n)

n+k)2 = 1 +
k

n
. (2.2)

Our first step is the following lemma, proven in Section 3:
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Lemma 1. Under conditions C1 − C4 uniformly in k :
|k − n| ≤ n1/2

|J (n)
k − 1| ≤ Cn−1/8 log1/4 n,

|J (n)
k + J

(n)
k+1 − 2| ≤ Cn−1/4 log1/2 n.

Remark 4. The convergence J (n)
k → 1, as n → ∞ and

|k − n| = o(n) without uniform bounds for the remain-
ders was proven in [2] under much more weak conditions
(V ′(λ) is a Hölder function in some neighborhood of the
limiting spectrum).

The lemma allows us to write J (n)
n+k = 1+ J̃k, where J̃k

is small for |k| ≤ n1/2. Replacing J (n)
n+k by 1 + J̃k in (2.2)

and keeping terms up to the order J̃3
k we get

2
(
J̃k−1 + 2J̃k + J̃k+1

)
+ J̃2

k−1 + J̃2
k+1 − 2J̃2

k

+4J̃k
(
J̃k−1 + 2J̃k + J̃k+1

)
+ 2J̃2

k

(
J̃k−1 + 2J̃k + J̃k+1

)

+2J̃k
(
J̃2
k−1 + J̃2

k+1

)
=
k

n
+O

(
J̃4
k−1 + J̃4

k + J̃4
k+1

)
. (2.3)

To estimate the remainder terms we define

mk := max
{

max
|j|≤|k|+n1/3/2

{
|J̃j |, |J̃j + J̃j+1|1/2

}
, (|k|/n)1/2

}
. (2.4)

We will prove below that |J̃k|, and |J̃k + J̃k+1|1/2 are of
the order (|k|/n)1/2 (|k| > n1/3), but we do not assume
this from the very beginning. Besides, it is convenient to
seek J̃k in the form

J̃k = (−1)kxk +
k

8n
(2.5)

and denote

d
(1)
k = xk+1 − xk, d

(2)
k = d

(1)
k − d(1)

k−1,

d
(3)
k = d

(2)
k+1 − d(2)

k . (2.6)

Then it follows from the definition (2.4) that
d

(1)
k , d

(1)
k−1, d

(2)
k = O(m2

k). Using (2.5) in (2.3) and keeping
only the terms up to the order O(m3

k), we get

− 2(−1)kd(2)
k + 4(−1)kxk

(
(−1)kd(2)

k +
k

2n

)

+d(2)
k (xk+1 + xk−1) + 2x2

k

k

2n

−2(−1)k
(
xk+1

k + 1
8n

+ xk−1
k − 1

8n
+ xk

k

4n

)

+2(−1)kxk
(
x2
k+1 + x2

k−1

)
= O(m4

k) (2.7)

Here we have used that

x2
k+1 + x2

k−1 − 2x2
k = d

(2)
k (xk+1 + xk−1) + 2d(1)

k d
(1)
k−1

= d
(2)
k (xk+1 + xk−1) +O(m4

k)

Equation (2.7) gives us immediately that d(2)
k = O(m3

k).
Hence, using that

xk+1 = xk + d
(1)
k = xk +O(m2

k),

xk−1 = xk − d(1)
k−1 = xk +O(m2

k)

(2.7) can be rewritten in the form

d
(2)
k − 2x3

k − xk
k

2n
= O(m4

k). (2.8)

This equation is a particular case of the equation

d
(2)
k − 2x3

k −
k

2P0(0)n
xk = rk, |rk| ≤ C̃ ′m̃4

k, (2.9)

where

m̃k := mk+[n1/3/2].

which we will obtain below for general V . Using (2.9) (or
(2.8)) we can find first the order of mk.

Lemma 2. Let the sequence {xk}|k|≤n1/2/2 satisfy
equation (2.9) with mk defined by (2.4) and |xk| ≤
Cn−1/8 log1/4 n. Then there exist C∗, L∗ > 0 such that
for any k : n1/2/5 > |k| > L∗n1/3

m̃k ≤ C∗ (|k|/n)1/2
. (2.10)

Besides, there exist C1,2,3 such that for n1/3 < k < k∗ =
[n1/3 log2 n]

|xk| ≤ C1n
−1/3e−C2(k/n1/3)3/2

+ C3m̃
4
2k∗ . (2.11)

The proof is given in Section 3. It is based on the
following proposition proven in Appendix.

Proposition 1. Let {x̃k}|k|<M , satisfy the recursive re-
lations:

x̃k+1 − 2x̃k + x̃k−1 = 2x̃3
k + r̃k,

|r̃k| ≤ ε3, |x̃k| ≤ ε1. (2.12)

Then for any |k| < M − 2M1 with M1 > 2ε−1/3

|x̃k| ≤ max{ε, (2M−2
1 ε1)1/3},

|x̃k+1 − x̃k| ≤ 4 max{ε2, (2M−2
1 ε1)2/3}. (2.13)
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Moreover, if for |k| ≤M

x̃k+1 − 2x̃k + x̃k−1 = fkx̃k + r̃k, (2.14)

with fk ≥ d2 > 0, then for |k| < M

|x̃k| ≤ Cd−1

( ∑

|j|≤M
e−d|k−j|r̃j + |xM |e−d|M−k|

+|x−M |e−d|M+k|
)
. (2.15)

Starting from this point the proofs of Theorem 1) for
the cases of V (λ) = λ4/4 − λ2 and general V coincide.
That is why below we will consider equation (2.9) instead
(2.8).

Define a continuous function qn(x), which for x ∈
Z/n1/3 coincides with xk

qn(
k

n1/3
) = n1/3xk.

and is a linear function for x 6∈ Z/n1/3. For x ∈ Z/n1/3

Lemma 2 allows us to write (2.9) as

qn(x+ h)− 2qn(x) + qn(x− h)
h2

= 2q3
n (x) +

x

2P0(0)
qn (x) + n−2/3O(|x|2 + 1), (2.16)

where h = n−1/3 and the bound for the remainder is
uniform in |x| ≤ log2 n. We are interested in the behavior
of the solution of this discrete equation which satisfies
conditions (cf. (2.10) and (2.11)):

|qn(x)| ≤ C|x|1/2, |qn(x)| ≤ e−Cx3/2/2, x→ +∞.(2.17)

It follows from Lemma 2 that the functions {qn(x)}∞n=1

are uniformly bounded and equicontinuous for any

bounded interval. Hence, this family is weakly compact
in any compact set in R and any convergent subsequence
converges uniformly to some solution of the Painleve
equation (1.17), satisfying (2.17). Now we need to prove
the asymptotic relations (1.18) for x→ −∞. To this aim
we use Lemma 3 below, which describes the behavior of
the Stieltjes transform of the following densities

gk,n(z) :=
∫
ρk,n(λ)dλ
λ− z ,

ρk,n(λ) :=
1
n
Kn,k(λ, λ),

Kn,k(λ, µ) :=
k∑

j=0

ψ
(n)
j (λ)ψ(n)

j (µ). (2.18)

Lemma 3. Under conditions C1− C4 for any k : |k| ≤
n1/3 log2 n gn+k,n(z) can be represented in the form

gn+k,n(z) = −1
2

(
V ′′(0)z +

V (4)(0)
6

z3

)

+
1
2
X(z)

(
P 2

0 (0)z4 +
k

n
P0(0)z2

+ck − δn+k,n(z)− δ̃n+k,n(z)
)1/2

, (2.19)

where X(z) =
√
z2 − 4 (here and below we choose the

branch which behaves like z as z → +∞) and

ck = ±n−5/3

|k|∑

j=0

(
2P0(0)q2

n(
±j
n1/3

)± j

2n1/3

)
. (2.20)

(± corresponds to the sign of k). Moreover, the remain-
der terms δn+k,n(z) and δ̃n+k,n(z) in (2.19) for z : |z| < 1
admit the bounds

|δn+k,n(z)| =

∣∣∣∣∣n
−2

∫
K2
n+k,n(λ1, λ2)(λ1 − λ2)2

(λ1 − z)2(λ2 − z)2
dλ1dλ2

∣∣∣∣∣ ≤ C
(|k|/n)1/2 + n−1/3

n2|=z|3 , (2.21)

|δ̃n+k,n(z)| ≤ C

[
n−4/3 + z2

(
n−2/3 + (|k|/n)3/2

)
+ |z|5 +

|z|5| log1/2 n

|=z|2n1/2

]
. (2.22)

The proof of the lemma is given in Section 3. Remark
that, since gn+k(z) is the Stieltjes transform of some pos-
itive measure,

=z=gn+k(z) > 0

Using the representation (2.19) we will show below that
for any k < −Ln1/3 with L > 0 big enough the above

condition implies that ck from (2.20) satisfies the bound

|ck| ≤ Cn−4/3L1/3

with some absolute C. And then from representation
(2.20) we will derive (1.18). Having both asymptotic
from (1.18), we can conclude that qn(x) converge uni-
formly on any compact in R to the Hastings-McLeod so-
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lution of (1.17), so that

∆n(x) = qn(x)− q(x)→ 0, as n→∞.

But from (2.16) we derive that for any x = k/n1/3 and
h = n−1/3 we have

h−2 (∆n(x+ h) + ∆n(x− h)− 2∆n(x))

=
[
2q2
n(x) + 2q2(x) + 2qn(x)q(x) + x

2P0(0)

]
∆n(x) + rn(x),

|rn(x)| ≤ Cn−2/3(|x|2 + 1). (2.23)

and uniformly in n

|∆n(x)| → 0, as x→ ±∞.

Proposition 2. For the Hastings - McLeod solution of
(1.17) there exists δ > 0 such that

6q2(x) +
x

2P0(0)
≥ δ2. (2.24)

This proposition allows us to apply the assertion (2.15)
of Proposition 1 to x̃k = ∆(k/n1/3) with d = n−1/3δ and
r̃k = rn(k/n1/3) with rn(x) from (2.23) The bound (1.19)
follows.

As it was mentioned above, the main difference in the
proof for the general case from the case V (λ) = λ4/4 −
λ2 is in the derivation of the equation (2.9). For non
polynomial V we cannot write V ′(J (n)) directly like in
(2.2) and therefore we need to use the Fourier expansion
of V ′. To construct this expansion it is convenient to
consider J (0) – an infinite Jacobi matrix with constant
coefficients

J (0)
k,k−1 = J (0)

k−1,k = 1 (2.25)

and to define for any positive N < n an infinite Jacobi
matrix J̃ (N) with the entries

J̃k =

{
J

(n)
n+k − 1, |k| < N,

0, otherwise.
(2.26)

Proposition 3. For any function v(λ), whose `th
derivative belongs to L2[σε] (σε = [−2 − ε, 2 + ε]), con-
sider a periodic function ṽ(λ) = ṽ(λ + 4 + 2ε) with the
same number of derivatives, and such that ṽ(λ) = v(λ)
for |λ| ≤ 2 + ε/2. Let also n1/2 ≥ N,M > n1/3 and
J̃ (N + M) is defined by (2.26). Then uniformly in N ,
M and |k| ≤ N for any fixed integer δ

v(J (n))n+k,n+k+δ − ṽ(J (0)

+J̃ (N +M))k,k+δ = O(M−`+1/2).(2.27)

The proof of the proposition is given in Appendix.

Lemma 4. Let v(λ) satisfy conditions of Proposition 3
with ` = 5, δ be any fixed integer and |k| ≤ 3n1/2/4.

Then

v(J (n))n+k,n+k−δ = v(J (0))k,k−δ − c(δ)1 J̃k +
∑′ P(δ)

k−l1 J̃l1

+
∑′ P(2,k,δ)

l1,l2
J̃l1 J̃l2 +

∑′ P(3,k,δ)
l1,l2,l3

J̃l1 J̃l2 J̃l3 + r
(δ)
k

= v(J (0))k,k−δ − c(δ)1 J̃k +
∑(1) +

∑(2)

+
∑(3) +r(δ)

k , (2.28)

where |r(δ)
k | ≤ Cm4

k and P(2,k,δ)
l1,l2

and P(3,k,δ)
l1,l2,l3

satisfy the
bounds:
∣∣∣∣
∑′ P(2,k,δ)

l1,l2
(l1 − k)(l2 − k)x̃l1 ỹl2

∣∣∣∣ ≤ C ||x̃||0 ||ỹ||0,∣∣∣∣
∑′ P(2,k,δ)

l1,l2
(l1 − k)2x̃l1 ỹl2

∣∣∣∣ ≤ C ||x̃||0 ||ỹ||0,∣∣∣∣
∑′ P(3,k,δ)

l1,l2,l3
(l1 − k)x̃l1 ỹl2 z̃l3

∣∣∣∣ ≤ C ||x̃||0 ||ỹ||0 ||z̃||0

(2.29)

for any bounded sequences {x̃k}, {ỹk} and {z̃k}. Here
and below ||x||0 = maxk |xk| and

∑′ means the summa-
tion over |li| ≤ |k|+ n1/3/2

Moreover,

P(δ)
l =

1
2π

∫ π

−π
F (δ)(2 cos(x/2))eilxdx, (2.30)

with some smooth F (δ)(λ) and for δ = 1

c
(1)
1 =

1
2π

∫ π

−π
v(2 cosx) cosx dx,

F (1)(λ) = 2P (λ) =
2
π

∫ 2

−2

v(λ)− v(µ)

(λ− µ)
√

4− µ2
dµ. (2.31)

For δ = 0 c(0)
1 = 0

F (0)(2 cos(x/2)) =
cos2(x/2)

2π

∫ π

−π

v(2 cosx1)dx1

cos2 x1 − cos2(x/2)
.

(2.32)

The proof of the lemma is given in Section 3.
Note, that if v coincides with V ′ for λ ∈ σε/2, then

v(J (0))k,k−1 = c1 =
1

2π

∫ π

−π
v(2 cosx) cosx dx

=
1
π

∫ π

−π
dx

∫ 2

−2

cosx
ρ(λ)dλ

2 cosx− λ = 1. (2.33)

It is easy to see also that, if in (2.31) P (λ) = λ2P0(λ),
then for any x̃k

∑
P(1)
k−lx̃l =

∑
P0,k−l(x̃l+1 + 2x̃l + x̃l−1), (2.34)

where

P0,l =
1
π

∫ π

−π
P0(2 cos(x/2))eilxdx.
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Let us seek J̃k in the form (cf (2.5))

J̃k = (−1)kxk + yk, (2.35)

where in order to simplify notations we denote

yk := k/(8P0(2)n), (2.36)

with P0(λ) defined by (1.11).
Now, substituting (2.35) in (2.28) and keeping the

terms up to the order m3
k (recall, that by definition (2.4)

yk = O(m2
k), d(1)

k = O(m2
k)), we get for δ = 1

∑(1)
= −

∑′ P0,k−l(−1)ld(2)
l +

∑′ P(1)
k−lyl

= −
∑′ P0,k−l(−1)ld(2)

l + yk
∑′ P(1)

k−l

+O(n−13/6), (2.37)

where we have used that P(1)
k−l = P(1)

l−k, so on the basis
of(A.2) with ` = 4 we have
∑′ P(1)

k−l(k−l)/n =
∑

|k−l|>n1/3

P(1)
k−l(k−l)/n = O(n−13/6).

Similarly
∑(2)

=
∑′ P(2,k,1)

l1,l2
(−1)l1+l2xl1xl2 +

2
∑′ P(2,k,1)

l1,l2
(−1)l1xl1yl2 +O(m4

k)

= x2
k

∑′ P(2,k,1)
l1,l2

(−1)l1+l2

+2xkd
(1)
k

∑′ P(2,k,1)
l1,l2

(−1)l1+l2(l1 − k)

+2xkyk
∑′ P(2,k,1)

l1,l2
(−1)l1

+2xk
∑(2)

1
+O(m4

k), (2.38)

where
∑(2)

1
=
∑′ P(2,k,1)

l1,l2
(−1)l1+l2

(
(xl1−xk)−(l1−k)d(1)

k

)
.

(2.39)
By the same way
∑(3)

=
∑′ P(3,k,1)

l1,l2,l3
(−1)l1+l2+l3xl1xl2xl3 +O(m4

k)

= x3
k

∑′ P(3,k,1)
l1,l2,l3

(−1)l1+l2+l3 +O(m4
k). (2.40)

Proposition 4. If v(λ) = V ′(λ), as λ ∈ σε/2, then
∑′ P0,k−l(−1)l = 2(−1)kP0(0) +O(n−3/2),

∑′ P(1)
k−l = 8P0(2)k/n+O(n−13/6),

∑′ P(2,k,1)
l1,l2

(−1)l1+l2 = 1 +O(n−5/6),
∑′ P(2,k,1)

l1,l2
(−1)l1+l2(l1 − k) = O(n−1/2),
∑′ P(2,k,1)

l1,l2
(−1)l1 = (−1)k +O(n−5/6),

∑′ P(3,k,1)
l1,l2,l3

(−1)l1+l2+l3 = (−1)k(4P0(0)− 1)

+O(n−1/2). (2.41)

If v(0)(λ) = λ−1V ′(λ) for λ ∈ σε/2, then

∑′ P(0)
l−k = 4P0(2) +O(n−7/6),

∑′ P(2,k,0)
l1,l2

(−1)l1+l2 = 2P0(0) +O(n−1/2). (2.42)

Substituting (2.41) into (2.37)-(2.40) and using (2.41),
we obtain

V ′(J (n))n+k,n+k−1 = 1− (−1)kxk − yk −
∑′ P0,k−l(−1)l

d
(2)
l + k/n+ x2

k + 2xk
∑(2)

1 +2xkyk(−1)k

+(−1)k(4P0(0)− 1)x3
k +O(m4

k). (2.43)

Using this expression in (2.1) and keeping the terms up
to the order O(m3

k), we get
∑′ P0,k−l(−1)l−kd(2)

l =

4P0(0)x3
k + 8P0(2)xkyk + 2xk

∑(2)
1 +O(m4

k),(2.44)

We consider this equations as a linear system of equations
with respect to the variables (−1)ld(2)

l for l ≤ N1 = |k|+
3n1/3/4.

Proposition 5. Let the even function P satisfy the in-
equality P (λ) ≥ δ > 0 for λ ∈ σε = [−2 − ε, 2 + ε] and
P (`) ∈ L2[σε]. Let Pk and (P−1)k be defined as

Pk =
1

2π

∫ π

−π
eikxP (cos(x/2))dx,

(P−1)k =
1

2π

∫ π

−π
eikxP−1(cos(x/2))dx

Assume that for |k| ≤ N1 (N1 > n1/3)
∑

|j|<N1

Pk−j x̃j = z̃k + ε̃k, (2.45)

and we have a priori bound |x̃k| ≤ ε0 (|k| ≤ N1).
Then for any |k| ≤ N1/2 and any n1/3 ≤ N2 < N1/2

x̃k =
∑

|j|≤N2

(P−1)k−j z̃j + εk, (2.46)

where

|εk| ≤ C
(

max
|j−k|≤N2

|ε̃k|+N
−`+1/2
2 ( max

|j|≤N1

|zj |+ ε0)
)
,

(2.47)
and C depends only on ||P (l)||2 and δ.

Apply Proposition 5 to the system (2.44) with ` = 5,
x̃k = d

(2)
k , z̃k = 0. Then we get

|ε̃k| =∣∣∣4P0(0)x3
k + 8P0(2)xkyk + 2xk

∑(2)
1 +O(m4

k)
∣∣∣ ≤ Cm3

k.

Moreover, since it follows from Lemma 1 that

|d(2)
k | = |d(1)

k − d(1)
k | ≤ Cn−1/4 log1/4 n
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we can take ε0 = Cn−1/4 log1/4 n. Then, on the basis of
Proposition 5, we obtain

|d(2)
k | ≤ Cm3

k+[n1/3/4], k ≤ n1/2/3. (2.48)

Using this bound combined with (2.29), we get for
∑(2)

1
from (2.39)

xk
∑(2)

1
= xk

∑′ P(2,k,1)
l1,l2

l1∑

k′=k

(l1−k′)d(2)
k′ = O(m4

k+[n1/3/4]).

Therefore (2.44) can be rewritten as

∑′ P0,k−l(−1)ld(2)
l = 4P0(0)x3

k+8P0(2)xkyk+O(m4
k+[n1/3/4]).

(2.49)
Now subtracting from (2.49) the same equation written
for k := k − 1, we get

∑′ P(0)
k−l(−1)ld(3)

l = O(m4
k+[n1/3/4]).

Using Proposition 5 for the variables (−1)ld(3)
l , we ob-

tain that |d(3)
k | ≤ Cm4

k+[n1/3/2]
for |k| ≤ n1/2/4. Hence,

writing

∑P0,k−l(−1)ld(2)
l = d

(2)
k

∑′ P0,k−l(−1)l +
∑′ P0,k−l(−1)l(d(2)

l − d(2)
k )

= d
(2)
k

∑′ P0,k−l(−1)l +O(m4
k+[n1/3/2]

),

in view of the first relation in (2.41), we get (2.9) from
(2.49). Now, using Lemma 2, we obtain the bound (2.10)
for m̃k and (2.11). We are left to show that the second
asymptotic of (1.18) can be obtained from Lemma 3.

Let us take k = −[Ln1/3] with L big enough. Since it
is known (see [12]) that any solution of the Painleve II
equations which satisfies (2.17) assumes also the bound

q2(x) ≤ −x
4P0(0)

, x ≤ −L0, (2.50)

we can conclude that

0 ≤ ck ≤ k2

4n2
+O

(
(|k|/n)5/2

)
. (2.51)

Now let us choose ε̃ = n−1/3P
−1/2
0 (0) and put in (2.19)

z = ε̃ζ. Then (2.19) takes the form

gn+k,n(ε̃ζ) = −Ṽ (ζ) +

1
2 ε̃

2P0(0)X(ε̃ζ)
√
ζ4 − Lζ2 + c̃k + φ̃(ζ),

where Ṽ is an analytic function,

0 ≤ c̃k = P−2
0 (0)ε̃−4ck ≤ L2

4
, (2.52)

(see (2.50)), and

|φ̃(ζ)| = P−2
0 (0)ε̃−4|δk,n(ε̃ζ) + δ̃k,n(ε̃ζ) +O(kn−2)|

≤ C(1 + |ζ|2),

for |=ζ| ≥ 1 (see (2.22)). Let b be the smallest root of
the quadratic equation

ζ2 − Lζ + c̃k = 0. (2.53)

We note, that due to (2.52) b is real and positive. Con-
sider

I(b, L) =
ε̃−2

2πi

∮

L
gn+k,n(ε̃ζ)e−ζ

2/2dζ (2.54)

=
P0(0)
2πi

∮

L
X(ε̃ζ)

√
(ζ2 − b)(ζ2 − L+ b)e−ζ

2/2dζ + r̃L,

where L consists of two lines =ζ = ±1 and

|r̃L| ≤ C
∮

L

|φ(ζ)| · |X(ε̃ζ)|e−|ζ|2/2|dζ|√
(ζ2 − b)(ζ2 − L+ b)

≤ CL−1/2.

(2.55)
Then, using the Cauchy theorem, we get

I(b, L) =
P0(0)

2π
= ∫

√
((εx)2 − 4)(x2 − b)(x2 − L+ b)e−x

2/2dx+ r̃L

= −P0(0)
2π

∫

|x|<b

√
(x2 − b)(x2 − L+ b)e−x

2/2dx

+
P0(0)

2π

∫

|x|≥L−b

√
(x2 − b)(x2 − L+ b)e−x

2/2dx

+r̃L +O(ε̃) = P0(0)I1(b, L) + r̃L +O(ε̃). (2.56)

One can prove easily that for large L

I1(b, L) ∼ −C0L
1/2b3/2, (C0 > 0).

On the other hand,

I(b, L) =
ε̃−2

2π

∫
e−x

2/2σ lim
ε→0
=gn+k,n(ε̃ζ)dx > 0.

Thus, taking into account (2.55)

L1/2b3/2 ≤ C ′|r̃L| ≤ C ′′L−1/2 ⇒ b ≤ CL−2/3

Hance, since b is the root of quadratic equation (2.53),
we have

|ck| = P 2
1 (0)ε̃4(L− b)b/4 ≤ C ′1n−4/3L1/3. (2.57)

The last inequality combined with (2.20), and the bound
for the first differences d(1)

j imply for k = [Ln1/3], l =
[L−1/6n1/3]

n−4/3O(L1/3) = c−k − c−k−l

=
2P0(0)
n5/3

k+l∑

j=k

q2
n(− j

n1/3
)− L+ L−1/6

2n4/3
L−1/6

= n−4/3

[
L−1/6

(
(2P0(0)q2

n(− k
n1/3 )− L

2 +O(L−1/6)
) ]
.
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Therefore,

|qn(−L)| = (4P0(0))−1/2L1/2(1 +O(L−1/2)).

But it is known (see [12] that any bounded for positive
x solution of (1.17), which possesses the above property
satisfies also the asymptotic relations

qn(−L) = s̃(4P0(0))−1/2L1/2(1 +O(L−2)), s̃ = sign q(0).
(2.58)

Hence, we have proved (1.18). Theorem 1 is proved.
�
The proof of Theorem 2 is based on the following

Proposition

Proposition 6. Consider the sequence of functions Kn :
R2 → R and for =ζ1,2 6= 0 define

Fn(ζ1, ζ2) = (2.59)

=
∫
=(t1 − ζ1)−1=(t2 − ζ2)−1(t1 − t2)2K2

n(t1, t2)dt1dt2, .

Assume that there exists F (ζ1, ζ2) of the form

F (ζ1, ζ2) =

=
∫ ∫

=(t1 − ζ1)−1=(t2 − ζ2)−1(t1 − t2)2Φ(t1, t2)dt1dt2

with Φ(t1, t2) bounded uniformly in each compact in R2

and such that for =ζ1,2 ≥ 1

|Fn(ζ1, ζ2)−F (ζ1, ζ2)| ≤ C(1+|ζ|2)εn, εn → 0, (2.60)

as n → ∞. Assume also that for any fixed ε ≥ 0 and
uniformly in a varying in any compact in R

Iε(a) =
∫

|t−a|≤ε
Kn(t, t)dt ≤ εC + o(1). (2.61)

Then for any intervals I1, I2 ⊂ R

lim
n→∞

∫

I1

dt1

∫

I2

dt2K2
n(t1, t2) =

∫

I1

dt1

∫

I2

dt2Φ(t1, t2).

Proof of Proposition 6. Consider the integral

∫

=ζ1=±1

dζ1

∫

=ζ2=±1

dζ2(Fn(ζ1, ζ2)− F (ζ1, ζ2))e−(ζ1−a1)2/2σ1e−(ζ2−a2)2/2σ2 . (2.62)

Using the Cauchy theorem, we get that for any σ1,2 > 0, a1,2 ∈ R

∣∣∣∣
∫ ∫

(t1 − t2)2
(K2

n(t1, t2)− Φ(t1, t2)
)
e−(t1−a1)2/2σ1e−(t2−a2)2/2σ2dt1dt2

∣∣∣∣ ≤ Cεn

with C, depending on a1, a2, σ1, σ2, but independent of
n. This implies that for any Lipshitz f1 and f2 with a
compact support

∫
(t1−t2)2

(K2
n(t1, t2)− Φ(t1, t2)

)
f1(t1)f2(t2)dt1dt2 → 0.

(2.63)
For any small enough ε denote by f (+ε)

1 a Lipshitz func-
tion which coincides with the indicator χI1 of I1 =
(a1, b1) inside this interval, equals to zero outside of
(a1− ε, b1 + ε) and is linear in (a1− ε, a1), (b1, b1 + ε). Let
f

(−ε)
1 be a similar function for the interval (a1 + ε, b1− ε)

and f
(±ε)
2 be similar functions for I2. Denote also

φε1(t1, t2) = (t1 − t2)−21|t1−t2|>ε1 + ε−2
1 1|t1−t2|≤ε1 .

Then, evidently

φε1(t1, t2)f (−ε)
1 (t1)f (−ε)

2 (t2) ≤ φε(t1, t2)χI1(t1)χI1(t2)

≤ φε1(t1, t2)f (+ε)
1 (t1)f (+ε)

2 (t2).

Integrate this inequality with (t1 − t2)2K2
n(t1, t2), and



10

take the limits n→∞ and then ε→ 0. We obtain

∫

I1×I2
dt1dt2Φ(t1, t2)−O(ε1)

≤ lim
n→∞

∫

I1×I2
dt1dt2K2

n(t1, t2)

+ lim
n→∞

∫

I1×I2
dt1dt2K2

n(t1, t2)
(

(t1 − t2)2

ε2
1

− 1
)

1|t1−t2|≤ε1

≤ ∫
I1×I2 dt1dt2Φ(t1, t2) +O(ε1).

But using the inequality K2
n(t1, t2) ≤ Kn(t1, t1)Kn(t2, t2)

and integrating first with respect to t1 and then with
respect to t2, on the basis of (2.61) we obtain that

∫

I1×I2
dt1dt2K2

n(t1, t2)
(
ε−2

1 (t1 − t2)2 − 1
)
1|t1−t2|≤ε1

≤ 2
∫

I1×I2
dt1dt2Kn(t1, t1)Kn(t2, t2)1|t1−t2|≤ε1

≤ 2Cε1

∫

I2

dt2Kn(t2, t2) ≤ C ′ε1.

Then, taking the limit ε1 → 0 we get the assertion of
Proposition 6.

Proof of Theorem 2. Take some fixed ζ1, ζ2 with
=ζ1,2 6= 0, denote z1,2 = ζ1,2n

−1/3 and consider the func-
tion

Fn(ζ1, ζ2) = =z1=z2

∫
(λ1 − λ2)2K2

n(λ1, λ2)dλ1dλ2

|λ1 − z1|2|λ2 − z2|2 ,

F
(1)
n (ζ1) = n−2/3

∫
(λ1 − λ2)2K2

n(λ1, λ2)dλ1dλ2

(λ1 − z1)2(λ2 − z1)2
.

(2.64)
Changing variables λ1,2 = t1,2n

−1/3, and using (1.20),
we get (cf (2.59))

Fn(ζ1, ζ2) = =ζ1=ζ2
∫

(t1 − t2)2K2
n(t1, t2)dt1dt2

|t1 − ζ1|2|t2 − ζ2|2 .

(2.65)
Hence, according to Proposition 6, to prove the weak
convergence of K2

n(t1, t2) to K2(t1, t2) of (1.21) we need
to check (2.60) and (2.61). Observe now that to prove
(2.61) it is enough to show that gk,n(z) defined in (2.19)
for any z = n−1/3ζ with =ζ ≥ εn satisfy the bound

∣∣∣∣gn,n(ζn−1/3) + ζn−1/3

2

(
V ′′(0) + (ζn−1/3)2V (4)(0)/6

) ∣∣∣∣
≤ Cn−2/3(|ζ|2 + 1), (2.66)

where C does not depend on n and ζ. Indeed, if we know
(2.66), then using the Cauchy theorem with a the contour

L, consisting of two lines =ζ = ±ε, we obtain the bound
∫

|t−a|≤ε
Kn(t, t)dt ≤ e1/2

∫
Kn(t, t)e−(t−a)2/2ε2dt

=
e1/2

2πi

∮

L
dζ

∫
dte−(ζ−a)2/2ε2Kn(t, t)

ζ − t

=
e1/2

2πi

∮

L
dζe−(ζ−a)2/2ε2n2/3

(
gn,n(ζn−1/3)

+
ζn−1/3

2

(
V ′′(0) + (ζn−1/3)2V (4)(0)/6

))

≤ C
∮

L
|dζ||e−(ζ−a)2/2ε2 |(|ζ|2 + 1) ≤ Cε, (2.67)

which proves (2.61). Consider F (1)
n (ζ1) defined in (2.64).

It is easy to see that

F (1)
n (ζ) = n4/3δn,n(z),

where δk,n(z) is defined in (2.22). Therefore, if we prove
that uniformly in =ζ ≥ εn = (log n)−1/2

|F (1)
n (ζ)| ≤ C(|ζ|2 + 1), (2.68)

then, using this bound in (2.19), we get (2.66). Hence,
our goal is to prove (2.60) and (2.68).

Using the Christoffel-Darboux formula, it is easy to
derive from (2.64) that

Fn(ζ1, ζ2) = (J (n)
n+1)2[=Rn,n(z1)=Rn−1,n−1(z2)

+=Rn,n(z2)=Rn−1,n−1(z1)
−2=Rn,n−1(z1)=Rn−1,n(z2)],

F (1)
n (ζ1) = 2(J (n)

n+1)2

[
d

dζ1
Rn,n(ζ1/n1/3)

d

dζ1
Rn−1,n−1(ζ1/n1/3)

−
(
d

dζ1
Rn,n−1(ζ1/n1/3)

)2]
(2.69)

where

Rk,m(z) =
∫
ψ

(n)
k (λ)ψ(n)

m (λ)
λ− z dλ (2.70)

is the resolvent of J (n) (R = (J (n) − z)−1).
Let us study first the case when in (1.16) s̃ = 1. Con-

sider the Dirac operator A defined in L2(R)× L2(R) by
the differential expression (1.23)-(1.18). Let Rα,β(x, y; ζ)
(α, β = 0, 1) be the kernel of the operator R(ζ) =
(2A − ζ)−1. It means that the coefficients Rα,β(x, y; ζ)
satisfy the equations

2
d

dx
R1,0(x, y; ζ) + 2q(x)R1,0(x, y; ζ)− ζR0,0(x, y; ζ)

= δ(x− y)

−2
d

dx
R0,1(x, y; ζ) + 2q(x)R0,1(x, y; ζ)− ζR1,1(x, y; ζ)

= δ(x− y)

−2
d

dx
R0,0(x, y; ζ) + 2q(x)R0,0(x, y; ζ)− ζR1,0(x, y; ζ) = 0

2
d

dx
R1,1(x, y; ζ) + 2q(x)R1,1(x, y; ζ)− ζR0,1(x, y; ζ) = 0

(2.71)
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Here δ(x) is the Dirac δ-function and, e.g., the first equa-
tion means that the l.h.s. is equal to zero, as x 6= y and
2R1,0(x+ 0, x)− 2R1,0(x− 0, x) = 1.

Consider a semi infinite matrix with entries

R∗n+2k+α,n+2m+β = (−1)(k+m)Rα,β
(

2k + α

n1/3
,

2m+ β

n1/3
; ζ
)
,

(2.72)
where −n ≤ k,m <∞, α, β = 0, 1. Define

D := (J (n) − z)R∗ − I. (2.73)

Then

R = R∗ −RD. (2.74)

Lemma 5. Set M = [n1/3 log2 n]. Then for −M ≤
k,m ≤M ,

|Dn+j,n+k| ≤ Cn−2/3
∑

α,β=0,1

(
1 + |ζ|2 + q2(x)

) |Rα,β(x, y; ζ)|

|Dn+k,n+k| ≤ Cn−1/3
∑

α,β=0,1

(1 + |ζ|+ q(x))|Rα,β(x, y; ζ)|,

(2.75)
with x = k+α

n1/3 , y = m+θ(α,β,k,m)
n1/3 , and |θα,β,k,m| ≤ 2.

Moreover, if D(M) = {Dn+j,n+k}Mj,k=−M , then

||D(M)|| ≤ Cn−1/3

|=ζ|1/2
(
|ζ|2 +

(
M/n1/3

)3/2
)
, (2.76)

The proof of (2.75 could be easily obtained from the
definitions of R∗, representation (1.16) of J (n)

n+k and equa-
tions (2.71). The proof of (2.76) follows from the bound,
valid for the norm of an arbitrary matrix A

||A||2 ≤ max
i

∑

j

|Ai,j | ·max
j

∑

i

|Ai,j |, (2.77)

(2.75) and the bound for the resolvent of the Dirac oper-
ator (see [14])
∫
|Rα,β(x, y; ζ)|2dy ≤ C|=ζ|−1=Rα,α(x, x; ζ) ≤ C ′|=ζ|−1,

(2.78)
To replace D by D(M) in (2.74) we use the following
proposition

Proposition 7. Let J be an arbitrary Jacobi matrix ,
with |Jj,j+1| ≤ A, for all j such that |j − k| ≤ M . Con-
sider R(z) = (z − J )−1 with |=z| ≤ A1. Then

|Rk,j(z)| ≤ C ′1
=z e

−C′2|=z||k−j| +
C ′1
|=z|2 e

−C′2|=z|M , (2.79)

where C ′1, C
′
2 > 0 depend only on A and A1.

Using the bound (2.79) we derive from (2.73) that for
|j|, |k| ≤M/2 and =ζ > log1/2 n

Rn+j,n+k = R∗n+j,n+k − (RD(M))n+j,n+k +O(e−c log3/2 n)

= R∗n+j,n+k − (R∗D(M))n+j,n+k + (R(D(M))2)n+j,n+k

+O(e−c log3/2 n) (2.80)
Hence, using (2.75) and (2.78), we obtain that for
|j|, |k| ≤M/2 and =ζ > log1/2 n

Rn+j,n+k = R∗n+j,n+k +O(n−1/3 logp n) (2.81)

with some positive n independent p. Thus, we have
proved (2.60) with

F (ζ1, ζ2) = (R0,0(0, 0; ζ1)R1,1(0, 0; ζ2)
+R0,0(0, 0; ζ2)R1,1(0, 0, ζ1)

−2R0,1(0, 0 + 0; ζ1)R1,0(0 + 0, 0; ζ2)), (2.82)

where we denote R0,1(0, 0 + 0, ζ1) =
limx→+0R0,1(0, x, ζ1). But, according to the spec-
tral theorem (see [14]),

Rα,β(x, y; ζ) =
∫

Ψα(x; t)Ψβ(y; t)
2t− ζ dt, (2.83)

where Ψ(x; t) = (Ψ0(x; t),Ψ1(x; t)) is the solution of
the Dirac system (1.23), satisfying asymptotic conditions
(1.24). The last two relations and the formula of the in-
verse Stieltjes transform yield

Φ(t1, t2) = (2π)−2 (Ψ1(0; t1/2)Ψ0(0; t2/2)

−Ψ0(0; t2/2)Ψ1(0; t/2))2
. (2.84)

Moreover, since Rk,j(n−1/3ζ) and R∗n+j,n+k(ζ/n1/3) are
analytic functions for =ζ > 0, taking the circle of the
radius =ζ/2 centered in ζ as a contour of integration and
using the Cauchy representation for the derivative and
(2.81), we obtain for =ζ > 2 log1/2 n

d

dζ
Rn+j,n+k(ζ/n1/3) =

d

dζ
R∗n+j,n+k(ζ/n1/3)

+O(n−1/3 logp+1 n) (2.85)

Using the representation (2.83) and taking into account
that Ψα(x; t) are smooth function with respect to t, ac-
cording to the standard theory of the Cauchy type in-
tegrals (see [16]) we get that the d

dζR
∗
n+j,n+k(ζ/n1/3) is

uniformly bounded up to the real line. Therefore we ob-
tain (2.68) and prove the assertion of Theorem 2 for l = 2.
For others l we study by the same way
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Fn(ζ1, . . . , ζl) =
∫ l∏

i=1

=(ti − ζi)−1(t1 − t2) . . . (tl − t1)Kn(t1, t2) . . .Kn(tl, t1)dt1 . . . dtl

Now, notice that the (Ψ0(x, t),Ψ1(x, t)) →
(−Ψ1(x, t),Ψ0(x, t)) gives us the solution of (1.23)
with potential q1(x) = −q(x) but does not change the
expression (1.22). This completes the proof of Theorem
2.

To prove Corollary 1 we split the expansion for the
Fredholm determinant in two parts: with m < N and
m ≥ N (m is the number of variables in the correspon-
dent determinant). Using the Hadamard bound for de-
terminants with m > N and then (2.67) it is easy to see
that the second sum possesses the bound CN/N !. Hence
using Theorem 2 we can take the limit n → ∞ in the
first sum and then take the limit N → ∞. Relation
(1.25) follows.

3. AUXILIARY RESULTS

Proof of Lemma 1. We introduce an eigenvalue distri-
bution which is more general than (1.4), making different
the number of variable and the large parameter in front
of V in the exponent of the r.h.s of (1.4):

pk,n(λ1, ...λk) = Z−1
k,n

∏

1≤j<m≤k
(λj−λm)2 exp

k∏

j=1

e−nV (λj),

(3.1)
where Zk,n is the normalizing factor. For k = n this
probability distribution density coincides with (1.4). Let

ρ̃k,n(λ1) =
∫
dλ2...dλkpk,n(λ1, ...λk),

ρ̃k,n(λ1, λ2) =
∫
dλ3...dλkpk,n(λ1, ...λk) (3.2)

be the first and the second marginal densities of (3.1).
By the standard argument [15] we obtain

ρ̃k,n(λ) = k−1Kk,n(λ, λ),

ρ̃k,n(λ, µ) =
Kk,n(λ, λ)Kk,n(µ, µ)−K2

k,n(λ, µ)
k(k − 1)

,
(3.3)

where Kk,n(λ, µ) is defined in (2.18). Remark also that

ρ̃k,n(λ) =
n

k
ρk,n(λ),

where ρk,n is defined in (2.18). Taking any twice dif-
ferentiable and vanishing outside σ2ε function φ(λ) and
integrating by parts with respect to V , we come to the

identity
∫
V ′(λ)ρ̃k,n(λ)φ(λ)dλ =

1
n

∫
ρ̃k,n(λ)φ′(λ)dλ

+2
k − 1
n

∫
ρ̃k,n(λ, µ)

φ(λ)
λ− µdλdµ. (3.4)

The symmetry property ρ̃k,n(λ, µ) = ρ̃k,n(µ, λ) of (3.2)
implies
∫
ρ̃k,n(λ, µ)

φ(λ)
λ− µdλdµ = −

∫
ρ̃k,n(λ, µ)

φ(µ)
λ− µdλdµ.

This allows us to rewrite (3.4) in the form
∫
V ′(λ)ρ̃k,n(λ)φ(λ)dλ =

1
n

∫
ρ̃k,n(λ)φ′(λ)dλ

+
k − 1
n

∫
ρ̃k,n(λ, µ)

φ(λ)− φ(µ)
λ− µ dλdµ.

Now, using (3.3) and the fact that
∫
K2
k,n(λ, µ)dµ = Kk,n(λ, λ),

we can rewrite the last equation as
∫
φ(λ)− φ(µ)

λ− µ ρk,n(λ)ρk,n(µ)dλdµ

−
∫
V ′(λ)ρk,n(λ)φ(λ)dλ+ δk,n(φ) = 0, (3.5)

where we denote

δk,n(φ) =
1

2n2

∫ (
φ′(λ) + φ′(µ)

−2φ(λ)−φ(µ)
λ−µ

)
K2
k,n(λ, µ)dλdµ.

Subtracting from (3.5) the relation obtained from (3.5)
by the replacement k → (k − 1) and multiplying the
difference by n, we obtain:

2
∫
φ(λ)− φ(µ)

λ− µ ρ(µ)[ψ(n)
k (λ)]2dλdµ

−
∫
V ′(λ)φ(λ)[ψ(n)

k (λ)]2dλ+ δ
(R)
k,n (φ) + δ̃

(R)
k,n (φ) = 0,(3.6)

where

δ
(R)
k,n (φ) =

1
n

∫
Kk,n(λ, µ)ψ(n)

k (λ)ψ(n)
k (µ)

(
φ′(λ) + φ′(µ)

−2
φ(λ)− φ(µ)

λ− µ
)
dλdµ

δ̃
(R)
k,n (φ) =

∫
φ(λ)− φ(µ)

λ− µ (ρk,n(µ)− ρ(µ))[ψ(n)
k (λ)]2dλdµ

− 1
n

∫
φ′(λ)[ψ(n)

k (λ)]2dλ.
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By Schwartz inequality

|δ(R)
k,n (φ)| ≤ 2

n
||φ′′||0

(∫
K2
k,n(λ, µ)(λ− µ)2dλdµ

)1/2

·
(∫

(ψ(n)
k (λ))2(ψ(n)

k (µ))2dλdµ

)1/2

≤ C

n
||φ′′||0

|δ̃(R)
k,n (φ)| ≤ |δ̃(R)

0,n (φ)|+ |k − n|
n
||φ′||0

≤ C
(
||φ′||1/22 ||φ′′||1/22

log1/2 n

n1/2
+ ||φ′||0 |k − n|

n

)
,

where the symbols ||...||0 and ||...||2 denotes the supre-
mum and the L2-norm on σε. Here we have used the
result of [5], valid for any smooth function φ(µ) defined
on σε

∣∣∣∣
∫
φ(µ)ρn,n(µ)dµ−

∫
φ(µ)ρ(µ)dµ

∣∣∣∣
≤ C||φ′||1/22 ||φ||1/22 n−1/2 log1/2 n, (3.7)

where the symbol ||...||2 denotes the L2-norm on σε.
Now we are going to use (1.3) in the second integral in

the r.h.s. of (3.6). But since this representation is valid
only for λ ∈ [−2, 2] we need to restrict the integrals in
(3.6) by some σε̃ = [−2− ε̃, 2 + ε̃] with some small ε̃ > 0.
To this aim we use

Proposition 8. Consider any unitary invariant ensem-
ble of the form (1.1) and assume that V (λ) possess two
bounded derivatives in some neighborhood of the support
σ of the density of states ρ. Let also σ consist of a fi-
nite number of intervals, ρ(λ) satisfy condition C4 and
ρ(λ) ∼ C(a∗)|λ− a∗|1/2 near any edge point a∗ of σ.

Then there exist absolute constants C,C0, ε0 > 0 such
that for any positive C0n

−1/2 log n ≤ ε ≤ ε0 and for any
integer k : |k| ≤ n+ n1/2 the bounds hold:
∫

R\σε
ρk,n(λ)dλ ≤ e−nCε,

∫

R\σε
(ψ(n)
k (λ))2dλ ≤ e−nCε.

(3.8)

This proposition was proved in [3]. It allows us to
restrict the integration in the first three integrals of (3.6)
by σε̃ with ε̃ = C0n

−1/2 logn. Now we can use (1.3).
The error, which appear because of this replacement is
of the order O(ε̃), because V ′(λ) is a smooth function in
σε̃. Hence, (3.6) can be rewritten in the form

2
∫

σε̃

(ψ(n)
k (λ))2dλ

∫ 2

−2

φ(µ)
λ− µρ(µ)dµ

= δ
(R)
k,n (φ) + δ̃

(R)
k,n (φ) +O(||φ||0n−1/2 logn). (3.9)

Take φ(λ) = P−1
0 (λ)(λ − z)−1 and substitute in (3.9).

Then, according to (1.13), we get

2
∫

σε̃

(ψ(n)
k (λ))2dλ

∫ 2

−2

µ2
√

4− µ2

(µ− z)(λ− µ)
dµ

= δ
(R)
k,n (z) + δ̃

(R)
k,n (z) +O(|=z|−1n−1/2 log n), (3.10)

where δ(R)
k,n (z) and δ̃(R)

k,n (z) have the form (3.7) and due to
(3.7) satisfy the bound

|δ(R)
k,n (z)| ≤ C

n|=z|2 , |δ̃(R)
k,n (z)| ≤ C|k − n|

n|=z|2 +
C log1/2 n

n1/2|=z|2 .
(3.11)

Thus, using the fact that

2
π

∫
µ2
√

4− µ2

(µ− z)(λ− µ)
dµ =

z2
√
z2 − 4

λ− z +(z2 +zλ+λ2)−2,

we get from (3.10)

Rk,k(z) = −
(
z2 + ak − δ(R)

k,n (z)− δ̃(R)
k,n (z)

+O(|=z|−1n−1/2 log n)
) 1
z2
√
z2 − 4

, (3.12)

where Rk,k(z) is defined in (2.70) and we denote

ak =
∫
λ2[ψ(n)

k (λ)]2dλ− 2. (3.13)

Let us assume that ak > Cn−1/2 log1/2 n with C big
enough. Then, using the bound (3.11) and the Rouchet
theorem, we get that Rk,k(z) has a root in the circle of ra-
dius 1

2a
1/2
k centered in the point ia1/2

k . But, by definition
(2.70),

=Rk,k(z)=z > 0, (3.14)

so Rk,k(z) cannot have zeros, when =z 6= 0 and therefore
we get that for |k − n| ≤ n1/2 ak ≤ Cn−1/4 log1/2 n.
Similarly, if we assume that ak ≤ −Cn−1/4 log1/2 n we
get that =Rk,k( 1

2 |ak|1/2eiπ/6) > 0, which also contradict
to (3.14). Thus, we obtain that

|ak| ≤ Cn−1/4 log1/2 n, |k − n| ≤ n1/2. (3.15)

From (3.13) and (3.12) we find

(J (n)
k )2 + (J (n)

k+1)2 =
∫

σe

λ2(ψ(n)
k (λ))2dλ

= 2 + ak,

((J (n)
k )2 + (J (n)

k+1)2)2 (3.16)

+(J (n)
k+1)2(J (n)

k+2)2 + (J (n)
k )2(J (n)

k−1)2 =
∫

σe

λ4(ψ(n)
k (λ))2dλ

=
∮

L

Rk,k(ζ)
ζ4dζ

2πi

= 6 + 2ak +O(
logn
n1/2

).

Using here the first equation for k := k ± 1 to express
(J (n)
k±1)2 and (J (n)

k+2)2 through (J (n)
k )2, we obtain

J2
k = 1 +

ak
2

+
ak+1 − ak−1

4

±
[
ak+1 + 2ak + ak−1

2
+O(

log n
n1/2

)
]1/2

.(3.17)
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Combining this relation with (3.15), we get the first state-
ment of Lemma 1. The second statement follows from the
first one and the first equation of (3.17).
�
Proof of Lemma 2. Relation (2.9) can be written as

d
(2)
k = 2x3

k + r̃k, r̃k = xkk(2P0(0)n)−1 + rk,

|r̃k| ≤ C∗(m̃k|k|/n+ m̃4
k), (3.18)

where C∗ is independent of N,n and we always can
choose C∗ > 1. If m̃k < k−1 for all k > n1/3, then (2.10)
is fulfilled. If m̃k > k−1 for some k > 4n1/3, we can
apply Proposition 1 to {xj}|j|≤M , with M = k, M1 =
[n1/3/2], ε3 = C∗

(
m̃k+2M1(k + 2M1)/n+m4

k+2M1

)
,

ε1 = mk+2M1 , because M1 > 2/3ε−1. Then, since

2ε1M
−2
1 = 8m̃k+2M1n

−2/3 < C∗m̃k+2M1(k+2M1)/n < ε3,

we obtain by (2.13) that

8ε3 = 8C∗
(
m̃k+2M1(k + 2M1)/n+m4

k+2M1

) ≥ m3
k.

Therefore at least one of the following inequalities holds

8C∗m̃k+2M1(k+ 2M1)/n ≥ m3
k/2 ∨ 8C∗m4

k+2M1
≥ m3

k/2
(3.19)

Since according to Lemma 1 |mk+2M1 | ≤ Cn−1/8 log1/4 n
the second inequality yields

m̃k+2M1 > 2m̃k (3.20)

If the second inequality in (3.19) is false, then the first
one holds. Write it as

m̃k+2M1 ≥ (16C∗)−1m̃k

(
m̃2
kn/k

) (
k/(k + n1/3)

)
.

(3.21)

Assume that for some k > 4n1/3

m̃2
kn/k ≥ 40C∗. (3.22)

Then (3.21)implies (3.20) and

m̃2
k+2M1

n/(k+2M1) ≥ 4
(
m̃2
kn/k

)·(k/(k + 2M1)) > 32C∗.

Hence, we can repeat this procedure l times with l =
[log n]. Then we obtain the inequality

m̃k+[logn]M1 > 2[logn]m̃k,

which contradicts to Lemma 1. Thus, (3.22) is false and
we have proved (2.10).

To prove (2.11) take any k0 > n1/3 denote x̃k = xk−2k0

and, taking into account (2.9), apply (2.15) with M = k0.
Then since fk > (k0/2P0(0)n) we obtain (2.11).
�
Proof of Lemma 4 Choose M = cn1/3, where the con-

stant c is small enough to provide the condition

dC2c < C1/7, (3.23)

where C1 and C2 are the constants from (A.5) and d =
π(2 + ε)−1. This condition and (A.5) guarantee that for
any l, l′ : |l − l′| > n1/3/6 and any j : |j| < M , |t| ≤ 1

|(eitdjJ (0)
)l,l′ | ≤ CedC2M−C1|l−l′|/4 ≤ Ce−C1n

1/3/42.
(3.24)

Applying (A.3) three times we get (2.28) with

P(δ)
k−l = c

(δ)
1 δk,l +

∫

s1+s2=1

ds1ds2

∞∑

j=∞
vj(ijd)

(
eijds1J

(0)
E(l)eijds2J

(0)
)
k,k+δ

,

P(2,k,δ)
l1,l2

=
∫
P
si=1

ds1ds2ds3

M∑

j=−M
vj(ijd)2

(
eijds1J

(0)
E(l1)eijds2J

(0)
E(l2)eijds3J

(0)
)
k,k+δ

,

P(3,k,δ)
l1,l2,l3

=
∫
P
si=1

ds1 . . . ds4

M∑

j=−M
vj(ijd)3

(
eijds1J

(0)
E(l1)eijds2J

(0)
E(l2)eijds3J

(0)
E(l3)eijds4J

(0)
)
k,k+δ

, (3.25)

r
(δ)
k =

∑

l1,...,l4

∫
P
si=1

ds1 . . . ds5

M∑

j=−M
vj(ijd)4

(
eijds1J

(0)J̃ eijds2J (0)J̃ eijds3J (0)J̃ eijds4J (0)J̃ eijds5(J (0)+J̃ )
)
k,k+δ

+
∫

s1+s2=1

ds1ds2

∑

|j|>M
vj(ijd)

(
eijds1J

(0)
J̃(eijds2J

(0) − eijds2(J (0)+J̃ ))
)
k,k+δ

,

where we denote by E(l) a matrix with entries:

E
(l)
k,m = δk,lδm,l+1 + δk,l+1δm,l.

Using the Schwartz inequality, we have

∑

j

|j|4|vj | ≤
(∑

j

|j|10|vj |2
)1/2(∑

j 6=0

|j|−2

)1/2

≤ C,
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Hence, using again the Schwartz inequality, we obtain

|r(δ)
k | ≤ m4

kd
4
∑

|j|<M
|j|4|vj |+mkd

∑

|j|>M
|j||vj |

≤ Cm4
k + CmkM

−7/2 ≤ Cm4
k, (3.26)

where the last inequality is valid because of the choice of
M and (2.4).

To obtain (2.29) we use the representation (see [1]):

(eijdsJ
(0)

)k,l =
1

2π

∫ π

−π
eijds cos xei(k−l)xdx = Jk−l(jds),

(3.27)
where Jk(s) is the Bessel function. But it is well known
(see, e.g. [1]) that the Bessel functions satisfy the follow-
ing recurrent relations:

kJk(s) =
s

2

(
Jk+1(s) + Jk−1(s)

)
.

Thus, e.g., the first sum in (2.29) can be expressed via
the terms
∑

|j|<M
vj(ijd)2

∫
P
si=1

ds1ds2ds3(djs1 + α1)(djs1 + α2)

·
∑′

Jk−l1+α3(djs1)x̃l1Jl1−l2+α4(djs2)ỹl2Jl2−k+α5(2js3),

where α1, . . . α5 can take the values 0,±1,±(δ+ 1). It is
easy to see that any of these sums can be written in the
form:

(eijds2J
(0)
X(α3)eijds2J

(0)
Y (α4)eijds2J

(0)
)k,k+α5 ,

X
(α)
k,l = δk,α+lx̃k, Y

(α)
k,l = δk,α+lỹk,

where evidently

||X(α)|| ≤ max |x̃k|, ||Y (α)|| ≤ max |ỹk|.

Hence, similarly to (3.26) we obtain
∣∣∣∣
∑′ P(2,k,δ)

l1,l2
(l1 − k)2x̃l1 ỹl2

∣∣∣∣
≤ C||x̃||0 ||ỹ||0

∑

|j|<M
|j|4|vj | ≤ C||x̃||0 ||ỹ||0.

The other inequalities in (2.29) can be proved similarly.
We are left to prove (2.31). Due to representations

(3.25) and (3.27), we derive that P(δ) can be represented
in the form (2.30) with

F (δ)(x) =
∑
P(δ)
l eilx

Using (3.25) and (3.27) we get

F (1)(x) = c
(1)
1 +

∑

j

(ijd)vj
∫ 1

0

ds1

∑

l

1
4π2

∫ π

−π

∫ π

−π
eil(−x1+x2+x)(1 + e−i(x1+x2))

· exp{2ijd[s1 cosx1 + (1− s1) cosx2]}dx1dx2

= c
(1)
1 +

1
2π

∫ π

−π

v(2 cosx1)− v(2 cos(x1 − x))
cosx1 − cos(x1 − x)

(1 + cos(2x1 − x))dx1

= c
(1)
1 +

1
2π

∫ π

−π
v(2 cosx1)

(
1 + cos(2x1 − x)

cosx1 − cos(x1 − x)
+

1 + cos(2x1 + x)
cosx1 − cos(x1 + x)

)
dx1

= P (2 cos(x/2)) + P (−2 cos(x/2)).

(3.28)

Representation (2.32) can be obtained similarly. Lemma
4 is proven.
�
Lemma 4 combined with Lemma 2 give us a useful

corollary

Corollary 2. For any even function φ(λ) which has three
bounded derivatives on [−2 + ε, 2 + ε]
∣∣∣∣φ(J (n))n+k,n+k− 1

π

∫ 2

−2

φ(λ)dλ√
4− λ2

∣∣∣∣ ≤ C
(

(|k|/n) + n−2/3
)
.

(3.29)

�
Proof of Proposition 4. Let us remark first that all

limiting expression in the r.h.s. of (2.41) and (2.42) cor-
respond to infinite sums over j in the definitions (3.25)

and infinite sums with respect to all li. The estimates
for the remainder terms, which appears because of the
restriction of summation in (3.25) over |j| < M , were
obtained already in the proof of Lemma 4. And the re-
mainders, which appear because of the replacement of
infinite sums by sums over |li| < Nk, can be estimated
by O(e−C1n

1/3/12) due to (3.24). Thus we are left to
compute infinite over li sums for P(2,k,δ)

l1,l2
and P(3,k,δ)

l1,l2,l3

The first relation in (2.41) follows immediately from
(2.30) and (3.28). To obtain the others let us consider an
infinite Jacobi matrix J (π) with J (π)

k,k−1 = J
(π)
k−1,k = (−1)k
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and define

Vk(a, b) = V ′(aJ 0 + bJ (π))k,k+1

=
a

2π(a2 − b2)

∫

σ

V ′(λ) signλ
(λ2 − 4b2)1/2

(4a2 − λ2)1/2
dλ

+
(−1)kb

2π(a2 − b2)

∫

σ

V ′(λ) signλ
(4a2 − λ2)1/2

(λ2 − 4b2)1/2
dλ. (3.30)

It is easy to see, e.g., that

∑

l1,l2

P(2,k,1)
l1,l2

(−1)l1+l2 =
1
2
∂2

∂b2
Vk(a, b)

∣∣∣∣
a=1,b=0

=
1

2π

∫ 2

−2

λV ′(λ)dλ√
4− λ2

− 1
π

∫ 2

−2

V ′(λ)dλ
λ
√

4− λ2
= 1.

Here we have used (1.14) and (2.33).
Similarly

∑

l1,l2

P(2,k,1)
l1,l2

(−1)l1 =
1
2
∂2

∂a∂b
Vk(a, b)

∣∣∣∣
a=1,b=0

= (−1)k.

To compute the sum for P(3,k,1)
l1,l2,l3

let us observe that

∑

l1,l2,l3

P(3,k,1)
l1,l2,l3

(−1)l1+l2+l3 =
1
6
∂3

∂b3
Vk(1, b)

∣∣∣∣
b=0

=
(−1)k

2
∂2

∂b2
1

(1− b2)
I(b)

∣∣∣∣
b=0

,

where

I(b) =
1

2π

∫

σ

(V ′(λ)− λV ′′(0)) signλ
(4− λ2)1/2

(λ2 − 4b2)1/2
dλ

=
1

2π

∫

σ

V ′(λ) signλ
(4− λ2)1/2

(λ2 − 4b2)1/2
dλ− V ′′(0)(1− b2).

Differentiating this expression, one can easily get the ex-
pression of (2.41).

To prove the last relation in (2.41) we use the symme-
try arguments. Indeed, according to (3.25),

h(k, l1) =
∑

l2

(P(2,k,1)
l1,l2

+ P(2,k,1)
l2,l1

)(−1)l1+l2 =
∑

j

vj(ijd)2

∫

s1+s2+s3=1

ds1ds2ds3

(
us1(k − l1)fs2,s3(k − l1)

+us1(k − l1 − 1)fs2,s3(l1 − k1 − 1) + us1(k − l1)fs1,s2(k − l1) + us1(k − l1 + 1)fs1,s2(l1 − k1 + 1)
)
,

where

us1(k − l) = (eijds1J
(0)

)k−l,

fs2,s3(l − k) = (−1)l(eijds2J
(0)J (π)eijds3J

(0)
)l,k.

Since both us1(k− l) and fs2,s3(l− k) are even functions
with respect to (l − k), after integration with respect to
s1, s2, s3 we get that

h(k, l1) = h(k− l1) = h(l1−k)⇒
∑

l1

h(k, l1)(k− l1) = 0.

To prove (2.42) we define similarly to (3.30)

V
(0)
k (b) = v(0)(J (0) + bJ (π))k,k

=
1
π

∫

σ

V ′(λ) signλ
(4b2 − λ)1/2X(λ)

dλ

=
1
π

∫

σ

(V ′(λ)− λV ′′(0)) signλ
(4b2 − λ)1/2X(λ)

dλ+ V ′′(0).

Then
∑

l1,l2

P(2,k,0)
l1,l2

(−1)l1+l2 =
1
2
∂2

∂b2
V 0
k (1, b)

∣∣∣∣
b=0

=
2
π

∫ 2

−2

(V ′(λ)− λV ′′(0))dλ
λ3X(λ)

= 2P0(0).

�

Proof of Lemma 3.

Substituting in (3.5) φ(λ) = (λ − z)−1 we get easily
the equation

g2
n+k,n(z) +

∫
V ′(λ)
λ− z ρn+k,n(λ)dλ = δn+k,n(z) (3.31)

with δn+k,n(z) of the form (cf. (3.6))

δn+k,n(z) =
(J (n)
n+k)2

n2

(
(R2)n+k,n+k(z)(R2)n+k−1,n+k−1(z)

− (R2)2
n+k,n+k−1(z)

)
, (3.32)

where (R2)k,j = (z − J (n))−2
k,j . Here we have used the

Christoffel-Darboux formula in the numerator of the in-
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tegrand in (2.22). Let us define

F (z) :=
∫
V ′(λ)
λ− z ρn+k,n(λ)dλ

−gn+k,n(z)
(
zV ′′(0) + z3V

(4)(0)
6

)

=
∫
V ′(λ)− λV ′′(0)− 1

6λ
3V (4)(0)

λ4(z − λ)
ρn+k,n(λ)dλ

+
(
V ′′(0) + z2V

(4)(0)
6

)∫
ρn+k,n(λ)dλ

+
1
6
λ3V (4)(0)

∫
λ2ρn+k,n(λ)dλ.

Using in the first integral here the representation

1
λ− z =

1
λ

+
z

λ2
+
z2

λ3
+
z3

λ4
+

z4

λ4(λ− z)

and taking into account the evenness of the functions
ρn+k,n and V , we get

F (z) =
∫
V ′(λ)
λ

ρn+k,n(λ)dλ

+z2

∫
V ′(λ)− λV ′′(0)

λ3
ρn+k,n(λ)dλ

+z4

∫
V ′(λ)− λV ′′(0)− 1

6λ
3V (4)(0)

λ4(z − λ)
ρn+k,n(λ)dλ

= c
(0)
k,n + z2c

(2)
k,n + z4c

(4)
k,n(z). (3.33)

Denote

Q(λ) =
∫
V ′(λ)− V ′(µ)

λ− µ ρ(µ)dµ.

Taking the limit n → ∞ in (3.31) and using (1.13), we
get for any λ ∈ [−2, 2]

λ4P 2
0 (λ)(λ2 − 4) = [V ′(λ)]2 − 4Q(λ)

⇒ Q(λ) =
1
4
(
[V ′(λ)]2 + λ4P 2

0 (λ)(4− λ2)
)
. (3.34)

Therefore, denoting v(0)(λ) = V ′(λ)λ−1, we get

c
(0)
k,n = Q(0) + c̃(0)

n + ck = c̃(0)
n + ck, (3.35)

where

c̃(0)
n =

∫
v(0)(λ)(ρn,n(λ)− ρ(λ))dλ,

ck = ±n−1

|k|∑

j=1

v(0)(J (n))n±j,n±j . (3.36)

Here and below in the proof of Lemma 3 the sign ± cor-
responds to the sign of k. Repeating the argument of

Lemma 4 for the function v(0)(λ), we obtain

v(0)(J (n))n±j,n±j = x2
j

∑

|l1|,|l2|<|k|+n1/3

P(2,k,0)
l1,l2

(−1)l1+l2

+yj
∑

|l1|<|k|+n1/3

P(0)
l1

+O
(

(k/n)3/2
)

= 2P0(0)x2
j +

j

2n
+O

(
(k/n)3/2

)
.

Thus, using (2.42), we get (2.20). Now let us observe
that
∫
V ′(λ)− λV ′′(0)

λ3
ρ(λ)dλ =

1
2
d2

dµ2
Q(µ)

∣∣∣∣
µ=0

=
1
4

(V ′′(0))2.

Hence,

c
(2)
k,n =

1
4

(V ′′(0))2 + c̃(2)
n ± n−1

|k|∑

j=1

v(2)(J (n))n±j,n±j ,

where

v(2)(λ) = (V ′(λ)− λV ′′(0))λ−3,

c̃(2)
n =

∫
v(2)(λ)(ρn,n(λ)− ρ(λ))dλ.

Using Corollary 2 from Lemma 2, we get

v(2)(J (n))n+k,n+k =
∫
v(2)(λ)dλ√

4− λ2
+O (|k|/n) +O(n−2/3)

= P0(0) +O (|k|/n) +O(n−2/3),

since
∫
v(2)(λ)dλ√

4− λ2
=

1
2
d2

dµ2

∫
(V ′(λ)− V ′(µ))dλ

(λ− µ)
√

4− λ2

∣∣∣∣
µ=0

= P0(0).

Therefore

c
(2)
k,n =

1
4

(V ′′(0))2 + P0(0)
k

n
+O

(
k2/n2

)
+ c̃(2)

n .(3.37)

Now we apply (3.7) to

v(4)(λ, z) =
V ′(λ)− λV ′′(0)− 1

6λ
3V (4)(0)

λ4(z − λ)
.

We get

c
(4)
k,n(z) =

∫
v(4)(λ, z)ρ(λ)dλ (3.38)

±n−1

|k|∑

j=1

v(4)(J (n), z)n±j,n±j +O

(
|z| log1/2 n

|=z|2n1/2

)

=
Q(4)(0)

4!
+O(z) +O

(
|z| log1/2 n

|=z|2n1/2

)
+O

( |z|k
|=z|n

)

=
1
4!
(
24P 2

0 (0) + 2V ′(0)V ′′(0)
)

+O(z) +O

(
|z| log1/2 n

|=z|2n1/2

)
,
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where the last equality follows from (3.34). Collect-
ing (3.35)-(3.38) we obtain from (3.31) that for =z ≥
n−1/3 log−1/2 n

g2
n+k,n(z) + gn+k,n(z)

(
zV ′′(0) + z3V

(4)(0)
6

)

+ck + z2

(
1
4

(V ′′(0))2 +
k

n
P0(0)

)

+z4

(
P 2

0 (0) +
V ′′(0)V (4)(0)

12

)
= δn+k,n(z)− c̃(0)

n − z2c̃(2)
n

+z2O
(

(k/n)3/2
)

+ |z|5|=z|−2O
(
n−1/2 log1/2 n

)
.

Solving this quadratic equation, we get

gn+k,n(z) = −1
2

(
zV ′′(0) + z3V

(4)(0)
6

)
+
(−P 2

0 (0)z4

−k
n
P0(0)z2 − ck + δn+k,n(z)− δ̃n+k,n(z)

)1/2

(3.39)

with ck defined by (2.20), δn+k,n(z) defined by (3.32) and

δ̃n+k,n(z) = c̃(0)
n + z2c̃(2)

n + z2
(
O(n−1) +O

(
(k/n)3/2

))

+O(z5) + |z|5|=z|−2O
(
n−1/2 log1/2 n

)
. (3.40)

Since (2.19) follows from (3.39), we are left to estimate
c̃
(0)
n , c̃(2)

n and δn+k,n(z).
Taking into account (3.32), to estimate δn+k,n(z) we

need to estimate (R2)n+k,n+k and (R2)n+k,n+k−1. Let
us take N ′ = k+ log2 nn1/3, and consider J̃ (N ′) defined
by (2.26) and

R(1)(z) = (z − J (0) − J̃ (N ′))−1.

Then, using the resolvent identity

H−1
1 −H−1

2 = H−1
1 (H2 −H1)H−1

2 (3.41)

and (2.79), we get for any z : =z > n−1/3

|(R2)n+k,n+k(z)− (R(1)R(1))k,k(z)| ≤ Ce−C log2 n.
(3.42)

Applying the resolvent identity (3.41) to R(0) = (z −
J (0))−1 and R(1)(z) defined above, we get

|R(1)
k,k(z)−R(0)

k,k(z)| ≤ |R(0)(z)J̃(N ′)R(1)(z))k,k|

≤ (|k|/n)1/2 + n−1/3

|=z|2 .

Now, using the Cauchy theorem and the above inequality,
we obtain

|(R(1)R(1))k,k(z)− (R(0)R(0))k,k(z)|

=
∣∣∣∣

1
2πi

∮

|z−ζ|=|=z|/2

R
(1)
k,k(ζ)−R(0)

k,k(ζ)
(ζ − z)2

dζ

∣∣∣∣

≤ C (|k|/n)1/2 + n−1/3

|=z|3 . (3.43)

Moreover,

(R(0)R(0))k,k(z) = − z

(z2 − 4)3/2
,

(R(0)R(0))k,k+1(z) = − 2
(z2 − 4)3/2

are bounded for |z| ≤ 1. Hence, substituting (3.43) in
(3.32), we get the first estimate in (2.22).

To estimate c̃(0)
n and c̃

(2)
n we subtract from (3.31) the

same equation for k := k − 1 and multiply the result by
n (see the proof of Lemma 1 for the details). Then we
get

2gn+k,n(z)Rn+k,n+k(z)

=
∫
V ′(λ)
z − λ (ψ(n)

n+k(λ))2dλ− δ(R)
n+k,n(z), (3.44)

where

δ
(R)
n+k,n(z) =

1
n

∞∑

j=1

Rn+k,j(z)Rj,n+k(z)

− 2
n

n+k∑

j=1

Rn+k,j(z)Rj,n+k(z).

Using the same trick as in (3.42), we get

δ
(R)
k,n (z) =

1
n

∞∑

j=1

R
(1)
k,j(z)R

(1)
j,k(z)− 2

n

k∑

j=1

R
(1)
k,j(z)R

(1)
j,k(z)

+O(e−C log2 n).

Besides, since R(0)
k,j(z) is an even function of (j − k), we

observe that

0 =
1
n

∞∑

j=−∞
R

(0)
k,j(z)R

(0)
j,k(z)− 2

n

k∑

j=−∞
R

(0)
k,j(z)R

(0)
j,k(z)

+
1
n

(R(0)
k,k(z))2,

Hence, to estimate δ(R)
n+k,n(z) it is enough to estimate the

difference between r.h.s. of the last two formulas. Using
that for |z| ≤ 1

|R(0)
j,k | ≤ Ce−|=z||j−k|,

we get

|δ(R)
n+k,n(z)| ≤ C

n3/2|=z|5/2 . (3.45)

Now performing transformations (3.33) for the integral
in the r.h.s. of (3.44), we can rewrite it as

Rn+k,n+k(z)(2gn+k,n(z)− V ′′(0)z − V (4)(0)z3/6)

= a
(2)
k,nz

2 − a(0)
k,n + δ

(R)
n+k,n(z) +O(z4), (3.46)
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where

a
(0)
k,n = v(0)(J (n))n+k,n+k

= 2n−2/3P0(0)q2
n(

k

n1/3
) +

k

2n
+O(n−1),

a
(2)
k,n = v(2)(J (n))n+k,n+k = P0(0) +O(n−2/3).

Let us take k > 0 and change the variable z = ε̃ζ with
ε̃2 = k/P0(0)n in (3.46). Then, using (3.39), we obtain
from (3.46)

Rn+k,n+k(ε̃ζ) =
ζ2 + 1

2 + 2P0(0)n
1/3

k q2
n( k
n1/3 ) + ε̃−2P−1

0 (0)δ(R)
n+k,n(ε̃ζ) + o(1)

2i
(
ζ4 + ζ2 + ε̃−4P−2

0 (0)
(
ck + δ̃n+k,n(ε̃ζ)− δn+k,n(ε̃ζ)

))1/2
:=

R1(ζ)

R
1/2
2 (ζ)

. (3.47)

In view of (3.45)

ε̃−2|δ(R)
k,n (ε̃ζ)| → 0, as

k

n1/3
→∞, =ζ > d

with any fixed d (see (3.45)). Besides, q2
n(x)→ 0, as x→

∞, because of (2.11). Therefore there exists some fixed
l0 > 0, such that for k > l0n

1/3 and any ζ : =ζ > 1/4
∣∣∣∣2P0(0)

n1/3

k
q2
n(

k

n1/3
) + ε̃−2P−1

1 (0)δ(R)
n+k,n(ε̃ζ)

∣∣∣∣

<
1
4
< min
|ζ−i/√2|=1/4

∣∣∣∣ζ2 +
1
2

∣∣∣∣.

Then according to the Rouchet theorem R1(ζ) has a root
inside the circle B of radius 1/4 centered at i/

√
2. Thus,

if R2(ζ) has no roots of the second order inside B, then
similarly to the proof of Lemma 1 we obtain a contradic-
tion with (3.14). Therefore, using the first inequality of
(2.22), (3.40) and (3.45) we conclude that there exists an
absolute constant C0, such that

|c̃(0)
n |, |c̃(2)

n |2 ≤ C0n
−4/3.

These bounds and (3.40) prove the second estimate of
(2.22).
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APPENDIX A: SOME PROPERTIES OF JACOBI
MATRICES

Proof of Proposition 3 Using the spectral theorem and
Proposition 8, we get
∣∣∣∣v(J (n))n+k,n+k−δ − ṽ(J (n))n+k,n+k−δ

∣∣∣∣

=
∣∣∣∣
∫

(v(λ)− ṽ(λ))ψ(n)
n+k(λ)ψ(n)

n+k−δ(λ)dλ
∣∣∣∣ ≤ Ce−nCε.

Let us represent ṽ(λ) by its Fourier expansion

ṽ(λ) =
∞∑

j=−∞
vje

ijdλ, d =
π

2 + ε
. (A.1)

Then we have

ṽ(J (n)) =
∞∑

j=−∞
vje

ijdJ (n)
=

∑

|j|≤cM
vje

ijdJ (n)
+O(M−`+1/2),

(A.2)
where c is some absolute constant which we will choose
later. The bound for the remainder term in the last for-
mula follows from the estimate

∥∥∥∥
∑

|j|>cM
vje

ijdJ (n)
∥∥∥∥ ≤

∑

|j|>cM
|vj |

≤
( ∑

|j|>cM
|vj |2|j|2`

)1/2( ∑

|j|>cM
|j|−2`

)1/2

≤ ||v(`)||2(cM)−`+1/2.

Consider now N ′ = [N+M ]+1 and denote by J (n,N ′)

the matrix whose entries coincide with that of J (n) with
the only exception J (n,N ′)

n±N ′,n±N ′+1 = 0. We will use the
Duhamel formula, valid for any matrices J1,J2

eitJ2 − eitJ1 =
∫ t

0

ei(t−s)J1(J2 − J1)eisJ2ds (A.3)

Let us take |k| < N and apply (A.3) to J (n)
n+k,n+k−δ and

J (n,N ′)
n+k,n+k−δ. Then we get
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v(J (n))n+k,n+k−δ − v(J (n,N))n+k,n+k−δ

=
∫ t

0

ds
∑

|j|≤M
vj
∑
±

(
(eijd(t−s)J (n,N′)

)n+k,n±N ′J (n)
n±N ′,n±N ′−1(eisJ

(n)
)n±N ′−1,n+k−δ

+(eijd(t−s)J (n,N′)
)n+k,n±N ′−1J (n)

n±N ′−1,n±N ′(e
isJ (n)

)n±N ′,n+k−δ

)
+O(M−`+1/2). (A.4)

Now we use the bound, valid for any Jacobi matrix J
with coefficients Jk,k+1 = Jk+1,k = ak ∈ R, |ak| ≤ A.
Then there exist positive constants C0, C1, C2, depend-
ing on A such that the matrix elements of eitJ satisfy
the inequalities:

|(eitJ )k,j | ≤ C0e
−C1|k−j|+C2t. (A.5)

These bounds follow from the representation

(eitJ )k,j =
1

2πi

∮

l

eitzR̃k,j(z)dz,

where R̃ = (zI − J )−1, and from (2.79).
Using (A.5) in (A.4), we get for any c < C0(C1d)−1

v(J (n))n+k,n+k−δ−v(J (n,N ′))n+k,n+k−δ = O((cM)−`+1/2).

Similarly (see definitions (2.25) and (2.26)):

v(J (0)+J̃ )k,k−δ−v(J (n,N ′))n+k,n+k−δ = O((cM)−`+1/2).

These two bounds give us (2.27).
�
Proof of Proposition 1. Assume that |x̃k| > ε for some

k. Without loss of generality we can assume that x̃k > 0.
Then due to (2.12)

x̃k+1 − 2x̃k + x̃k−1 > x̃3
k.

Consider first the case when also d̃(1)
k = x̃k+1 − x̃k > 0.

Then by induction for any M−k > i > 0 we have d̃(1)
k+i >

d̃
(1)
k , x̃k+i > x̃k and d̃

(2)
k+i > x̃3

k. Hence

ε1 > x̃k+M1 > x̃k + x̃3
kM

2
1 /2.

If d̃(1)
k < 0, then according to (2.12) we have x̃−k−1 >

x̃k and we obtain (2.13) moving from k in the negative
direction.

Similarly, assume that at some point |k| ≤M − 2M1

d̃
(1)
k > 4 max{ε2, (2ε1M

−2
1 )2/3} =: 4µ2. (A.6)

Since |d̃(2)
k | ≤ 3µ3 because of (2.12) and the first inequal-

ity of (2.13), we have for any |i| < i0 := [2/(3µ)] ≤
[2/(3ε)] ≤M1

d̃
(1)
k+i > d̃

(1)
k /2⇒ µ ≥ |x̃k+si0 | > i0d̃

(1)
k /2 = 3µ−1d̃

(1)
k ,

where s = signx̃k. The last inequality here contradicts
to (A.6). Hence, (A.6) is false and we obtain the second
inequality of (2.13).

To prove (2.15) observe that if we consider two (2M +
1)× (2M + 1) Jacobi matrices J (f) and J (d) with entries

J (f) = D(f) − J (0), J (d) = D(d) − J (0)

D
(f)
k,j = δk,j(2 + fk), D

(d)
k,j = δk,j(2 + d2), |k| ≤ 2M,

then, using the Neumann expansion for their inverse we
get

0 ≤ (J (f))−1
k,j ≤ (J (f))−1

k,j ≤ (2d)−1e−d|k−j|. (A.7)

Hence, rewriting (2.14) as

(J (f)x̃)k = −r̃k + δk,2M x̃2M+1 + δk,−2M x̃−2M−1,

we get (2.15) from (A.7).
�
Proof of Proposition 7. We use the estimate for matrix

elements of the resolvent of an arbitrary Jacobi matrix
J , with entries |Jj,j+1| ≤ A:

|Rk,j(z)| ≤ C ′1
|=z|e

−C′2|=z||k−j|, (A.8)

This estimate is similar to well-known Combes- Thomas
estimates for Schrödinger operator (see e.g.[19]).

Let J (k,M) be the Jacobi matrix, whose entries
coincide with that for J with the only exceptions
J (k,M)
k±M,k±M+1 = J (k,M)

k±M+1,k±M = 0, and R(k,M) = (z −
J (k,M))−1. Then, by the resolvent identity (3.41)

Rk,j −R(k,M)
k,j =

∑
±

(
R(k,M)
k,k±MJk±M,k±M+1Rk±M+1,j

+R(k,M)
k,k±M+1Jk±M+1,k±MRk±M,j

)
.

Since J (k,M) has a block structure, its resolvent R(k,M)

also has a block structure and its coefficients R(k,M)
k,j do

not depend on Jj,j+1 with |j − k| > M . Hence, we can
apply (A.8) to R(k,M)

k,j , R(k,M)
k,k±M and R(k,M)

k,k±M+1. Then we
get (2.79). Proposition 7 is proved.
�
Proof of Proposition 5 We would like to consider the

system (of equations 2.45) like a linear equation in l2. To
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this end we set

z̃k =
∑

|l|≤N1

Pk−lx̃l, ε̃k = 0, |k| > N1.

Then it is easy to see that

|zk| ≤ ||P||ε0,

and it follows from (2.45) extended for all k that with
above zk, ε̃k that

x̃k =
∑

l

P−1
k−l(z̃l + ε̃l). (A.9)

Moreover, since by condition of the proposition P has
`th derivative from L2[−2, 2], P−1 also has `th derivative
from L2[−2, 2]. Therefore, using (A.2) we have for any k

∑

|l−k|>N2

|P−1
k−l| ≤ N−`+1/2

2 . (A.10)

Using this bound in (A.9) we get (2.46).
�

APPENDIX B: PROOF OF PROPOSITION 2

. It is evident that it is enough to prove (2.24) for the
case when 2P0(0) = 1 in (1.17) and (2.24). Hence, below
we consider this case. For x > 0 the statement is evident.

To prove it for x < 0 remark first that if for some
x1 > 0

q′(x1)
q(x1)

>
Ai′(x1)
Ai(x1)

,

then since for x > 0 q′′(x) > xq(x) we have that for
x > x1

q(x) > y(x),

where y(x) is the solution of the initial value problem

y′′(x) = xy(x), y(x1) = q(x1), y′(x1) = q′(x1).

But according to the standard theory of the differential
equations, the last problem has the solution

y(x) = c1Ai(x) + c2Bi(x)

with

c2 = W−1{Ai,Bi}q(x1)Ai(x1)
(
q′(x1)
q(x1)

− Ai′(x1)
Ai(x1)

)
> 0,

where W{Ai,Bi} = Ai(x)Bi′(x) − Ai′(x)Bi(x) = π−1

(see [1]). But then q(x) > y(x) → ∞ as x → ∞, that
contradicts to (1.18). Hence we conclude that for x > 0

(log q(x))′ ≤ (logAi(x))′,
and since it is known (see [12]) that q(x) = Ai(x)(1+o(1))
as x→ +∞, we obtain that

q(0) > Ai(0) = 0.355028... > 32/3/6,

(for Ai(0) see [1])

For x < 0 set

f(x) :=
√
−x/6− q(x),

and let x0 be the first negative root of f . It is known
that q(x) > 0, q′(x) < 0 (see [12]) and so

√
−x0/6 = q(x0) > q(0) > 32/3/6⇒ x0 < −31/3/2.

But for any point x ≤ x0 < −31/3/2 in which q(x) ≥√
−x/6

q′′(x) ≤
√
−x/6(x− x/3) ≤ −2

3

√
−x3

0/6

< −
(

4
√

6(−x0)3
)−1

≤
(√
−x/6

)′′
.

Therefore f ′′(x) > 0 for x ≥ x0. Since by definition
f(x0) = 0, f ′(x0) ≤ 0 (because f(0) < 0 and x0 is the
first root of f) we conclude that f(x) < 0 for any x < x0

that contradicts to (1.18). Thus we have proved that the
left hand side of (2.24) is always positive. But since it
tends to infinity as x → ±∞, we conclude that there
exists positive δ, satisfying (2.24).
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