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We study the double scaling limit for unitary invariant ensembles of random matrices with non
analytic potentials and find the asymptotic expansion for the entries of the corresponding Jacobi
matrix. Our approach is based on the perturbation expansion for the string equations. The first
order perturbation terms of the Jacobi matrix coefficients are expressed through the Hastings-
McLeod solution of the Painleve II equation. The limiting reproducing kernel is expressed in terms
of solutions of the Dirac system of differential equations with a potential defined by the first order

terms of the expansion.

PACS numbers: Valid PACS appear here

1. INTRODUCTION

We consider the unitary invariant matrix model, de-
fined by the probability distribution

P.(M)dM = Z; ' exp{—nTeV(M)}dM, (1.1)

on the set of Hermitian n x n matrices. Here Z,, is a
normalizing constant, V : R — R is a Holder function
satisfying the condition

V(A) > (24 ¢)log(1+ |A])-

According to results of [5, [13], the Normalized Count-

ing Measure (NCM) of eigenvalues {Agn)};”zl tends
weakly in probability, as n — oo, to the non random
limiting measure A" known as the Integrated Density of
States (IDS). The IDS is absolutely continuous if V' sat-
isfies the Lipshitz condition. The IDS can be found as
a unique solution of a certain variational problem [5] [13]
which imply, in particularly, that if V’/()\) satisfies the
Lipshitz conditions on the support o of limiting IDS, then
the density of IDS p(A) is a solution of the following in-
tegral equation

V/(\) = 2/ pA(“)CL”,

While IDS depends strongly on the form of V', the local
eigenvalue statistics is expected to be universal. Denote
by pn(A1, ..., An) the joint eigenvalue probability density.
It is known (see [15]) that

(1.2)

o = suppN.

(1.3)

n

T -2 [evo.

1<j<k<n j=1
(1.4)

where @), is the respective normalization factor. Let

P (A A) = /pn(/\l,...,)\l,)\l+1,...)\n)d)\l+1...d)\n
(1.5)

Prn(A1, ) = Q)0
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be the [th marginal distribution density of (1.4). Uni-
versality of local eigenvalue statistics means that if we
consider some )y € o, then all marginal distribution den-
sities after a proper scaling (which depends on the behav-
ior of the limiting DOS p(A) near the point A = Ag) tend
to some universal limits.

The most known quantity probing universality is the
gap probability

E (Ay) =P, (A" ¢ A,, 1=1,...n}, (1.6)

where P,,{...} is defined by (L.1), and A,, is an interval
of the spectral axis, whose order of magnitude is fixed
by the condition nAN(A,) ~ 1. For unitary invariant
matrix models E, (A,,) can be obtained as the Fredholm
determinant of a certain integral operator. This structure
of the gap probability is a consequence of the structure
of marginal densities, and the latter can be explained
by the link of matrix models with orthogonal polynomi-
als pln)()\), (I =1,...) on R associated with the weight
e~V The link is provided by the formula [15]

(n—10

n!

|
P e A1) = det [ K, (A, M) mrs (1.7)

where

Ko =Y ™ 0w (u) (1.8)
=1

is known as a reproducing kernel of an orthonormalized
system

=eVN2PM(), leN,  (L9)
in which Pl(”) (A) is a polynomial of I-th degree with a pos-
itive coefficient in front of A!. This polynomial is uniquely
defined by the orthogonality conditions

/ PP (e ™ NV dx = 5. (1.10)

Formula (1.7) allows us to reduce the question on
the behavior of the scaled /th marginal density to the
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question of the existence of the limit of IC,(s,t) =
n~ 7K, (s/n",t/nY) for a proper chosen 7.

In the bulk case (p(Ag) # 0) we choose v = 1. Then
the limiting hole probability is the Fredholm determinant
of the integral operator, defined by the kernel sinz(t; —
to)/m(t1—t2) on the interval (0, s). This fact for the GUE
was established by M. Gaudin in the early 60s [15]. The
same fact was proved recently in [8, [17] for certain classes
of matrix models.

The edge case of local eigenvalue statistics was studied
much later even for the GUE [111 20]. Tt was found that
if we choose v = 2/3, then for the edge points A\g = *a (
0 = [—a, a]) the hole probability (1.6) of the GUE in the
limit n — oo is the Fredholm determinant of the integral
operator, defined on the interval (0, s) by the Airy kernel.
This fact for real analytic potentials in (1.1) was obtained
in [9]. In the paper [I8] a more simple proof of the edge
universality for the same class of potentials was given.
An important advantage of the method of [18] is that it
can be generalized to a class of non analytic potentials.

Universality near the critical point (v = 1/3) was stud-
ied first for V(A) = 1A* — A? by using the Riemann-
Hilbert approach in [4]. Here the asymptotic of the Ja-
cobi matrix coefficients and the limiting reproducing ker-
nel were found. The results of [4] after proper normal-
ization (see Remark [3| after Theorem [1)) coincide with
results found below for more general V. The method of
[4] was generalized on a class of real analytic symmetric
potentials in [7] under additional assumptions that the
limiting spectrum o consists of one interval and the den-
sity p(A) behaves like a square root near the edge points
and has only one critical point inside o (cf. condition
C3 below). But the asymptotic behavior of the Jacobi
matrix coefficients was not studied.

In the present paper we find the asymptotic behav-
ior of the Jacobi matrix coeflicients and on the basis
of this result prove universality near the critical point.
We need not to assume that V(\) is a real analytic
function. Our approach is based on the mathemati-
cal version of physical ideas proposed in [6]. The pa-
per [6] was devoted to the case of V being a polyno-
mial of minimal degree, which provides the condition
p(A) ~ (A = 2)™"1/2 near the edge point A = 2. It was
shown on the physical level of rigor that for these poten-
tials Jr(fjr)k =14+n""fu(k/n'7"), where v = 2m/(2m+1)
and f,, is a solution of some non linear differential equa-
tion of order 2m — 2. Moreover, then the resolvent
(J — 2)~1 for z = 2+ (n~2/?"+1 can be written in
terms of the resolvent of the second order differential op-
erator —% + fm(z) at the point . In fact Theorems
1l and 2/ of the present paper establish similar facts for
the case of symmetrical potential with one critical point
under proper smoothness conditions on the potential V.

Let us state our main conditions.

C1. The support o of the IDS of the ensemble consists
of a single interval: o = [-2,2].

C2. V(M) is an even real locally Lipshitz function in
R.

C3. The DOS p(\) has the form
1

o0 = o NPV,

where Py(A) > § > 0 for A € [-2,2] and there

exists € > 0 such that P®)(\)y € La[o.], where
oe =[-2—¢,2+¢].

AE[-2,2,  (L.11)

C4. The function

u) =2 [loglu = Np(udu V() (112

achieves its mazimum if and only if X € [—2,2].

Remark 1. It follows from (1.3) that condition C3 im-
ply that VO ()\) € Lofo.]. In fact Theorems (1 and 2
below can be proved if V®)(\) € Lalo.], but the proof is
more complicated. Since V*)(0) is used in the limiting
formulas for Theorem 1, it is natural to expect that the
existence of continuous V(4)()\) in some neighborhood of
A = 0 is a necessary condition for Theorem [1. Thus
condition C3 does not look too restrictive.

Remark 2. It is well known DOS p of the ensemble (1.1)
for o =[—2,2] has the form (1.11)

PN = ~xe (N PA)VE— 22,

o (1.13)

where X»(\) is the indicator of o and it follows from (1.3)
that P(\) can be represented in the form

_1 VY=V
G rery =0

So condition C3 means that p(X\), behaves like square root
near the edge points and has the second order zero at
A=0.

(1.14)

Define a semi infinite Jacobi matrix J (”), whose en-
tries Jl(ﬂ,l = Jl(fll = Jl(n) are defined by the recurrent
relations

o (O) = JE ) + I ), (115)
where [ = 0,1,..., Jén) = 0 and wl(n) is defined by

(1.9). The main result of the paper is
Theorem 1. Let conditions C1-CJ be fulfilled. Then for
any k : |k| < n'/3log*n
(n) _ o Kk, —1/3 K k
oty =1+3(=1)"n q(n1/3)+8npo(2)+rk, (1.16)

where q(x) is the Hastings-McLeod solution of the
Painleve II equation

zq(x) + 2¢°(x), (1.17)



which is uniquely defined (see [12]) by the asymptotic con-
ditions

1
lim q (wl)

lim ¢(z) =0, = )
v—=oc (—z)1/2  9pl/3(q)

Tr——+00

(1.18)

Py(N) is defined by (1.11), § = sign(l—Jﬁn)) and remain-
der terms 1y, satisfy the bounds

el < Cnt ((/n /)2 1), (1.19)

where C is some absolute constant.

Remark 3. The result of Theorem (1 coincides with
asymptotic of the Jacobi matriz coefficients obtained in
[] for the case V(\) = A\*/4 — N2, Indeed, since coef-
ficients Ry, of [{] in our terms are J? (compare the re-
cursion relations (1.15) of [4] with (1.15) of the present
paper) taking into account that Py(xz) = 1 for V(A) =
A4 — N2, from formula (1.16) above we obtain:

k

Royyr =1+ 2§(-1)kn*1/3q(m)

k k
+n 2/:)’QQ(W) tot Ths

Now, choosing as in [{] y = 27/3k/n'/3 and denoting
u(y) = 2Y/3¢(273y), we obtain (1.45)-(1.48) of [{] with
co =23, ¢; = 2213, ¢y = 27%/3)2 from (1.17)-(1.18).
The only difference is that in [4] it is proved that § =
(—1)"*L, while the result of Theorem [1 does not justify
the sign of §. But it is proved in Theorem 2 that the sign
of § has no influence on the behavior of the marginal
densities in the double scaling limit.

To prove universality of local eigenvalue statistics we
study
Kty ta) = n V3K, (tin /3 tyn=1/%). (1.20)

Theorem 2. Under conditions C1-CJ for any Il € N
there exists a weak limit of the marginal density (1.5)

lim (2n2/3)'p™ (2t1 /03, ... 261 /n'/?)

= det{K(t;,t;)}, j_1, (1.21)
where
Wy(0;t1)Wo(05t2) — WUo(05¢1)P1(0;¢
K(th,ts) = 1(05£1) o (0;2) — Wo(0;£1) W1 (05 £2)

m(ty —t2) ’
(1.22)

J

(o) (20 + (0 +

Our first step is the following lemma, proven in Section

n n k
']r(LJr)kJrl)Q) - Q(Jr(LJr)k)Q =1+ -

and ¥(x,t) = (Vo(z;t), Uyi(x;t)) is a solution of the
Dirac system of equations

AW (z,t) = t®(, t),
A=(Ga) i (o ),

with q(x) defined by (1.17)-(1.18), and ¥(x,t) chosen
from the asymptotic conditions

(1.23)

lim [®¥(z;t)| =0, lim |[¥(z;?)[=1. (1.24)

x

Corollary 1. Under conditions C1-CJ the gap probabil-
ity (1.6) for A, = [n="/3a,n=1/3b] converges, asn — oo,
to the Fredholm determinant of the integral operator de-

fined in [a,b] by the kernel (1.21)):

lim E,([an™3,on~Y3]) = det(I — K([a, b])).

n—oo

(1.25)

The paper is organized as follows. In Section 2 we
prove Theorems (1] and [2. The proofs of the most of aux-
iliary results are given in Section 3. Some auxiliary re-
sults which have no direct links with matrix models (some
properties of the Hastings-McLeod solution, bounds for
smooth functions of Jacobi matrices etc.), are proven in
Appendix.

2. PROOFS OF THEOREMS 11, 12

Proof of Theorem 1. The main idea of the proof is to
use the perturbation expansion of the string equations:

n n k
TVI(T O = - (2.1)
which we consider as a system of nonlinear equations
with respect to the coefficients J,g"). Here and below we

denote by J( a semi-infinite Jacobi matrix, defined in
(L.15). Relations (2.1) can be easily obtained from the
identity

/
[ (e R mET ) i =o.

To make the idea of the proof more understandable we
first explain how does the method work in the simplest
case V(A) = A/4 — A2, In this case the sting equation
(2.1) has the form

(

3:



Lemma 1. Under conditions C1 — C4 uniformly in k :
|k —n| < nt/2

|J,gn) —1]| < Cn Y3log4n
|J,£n) + J,gi)l -2/ < Cn~1*log!/?

Remark 4. The convergence J,g") — 1, as n — oo and
|k — n| = o(n) without uniform bounds for the remain-
ders was proven in [2] under much more weak conditions
(V'(X) is a Hélder function in some neighborhood of the
limiting spectrum).

max

my := max
[71<|k|4+nt/3 /2

We will prove below that |Ji|, and [J + Jiy1|"/? are of

the order ([k|/n)"? (k| > n'/3), but we do not assume
this from the very beginning. Besides, it is convenient to
seek Jj, in the form

- k
J = (=1)kzy, + 5 (2.5)
and denote
AV = apn —ap, dP =d —dl”,
dP =d?) —d?.  (26)
Then it follows from the definition (2.4) that

d(l) dg)p d(2) = O(m3}). Using (2.5) in (2.3) and keeping
only the terms up to the order O(m3), we get

k
2(~1)Fd) +4(—1)kay ((—1)kd§f) + 2)
n
k
+d§€2) (Tps1 + Tp—1) + 233%%
k+1 k-1 k
—2(—1)*
(=1) (ka N T k4n>
—|—2(—1)kxk (Jci_H + xk_l) = O(mk) (2.7)

Here we have used that
22y +ad_y — 20} = dP (2per + o) + 240 d0
= d”) (41 +241) + O(m)

Equation (2.7) gives us immediately that d( ) = = O0(m}).
Hence, using that

Tril = Tk +d( ) — =, + O(mk),
zp —d\ | =z + O(m3)

Tk—1

4

The lemma allows us to write J( )k =1+ Jk, where Jj
1/2 by 1+ .Jj, in (2.2)
and keeping terms up to the order j,f we get

is small for |k| < n'/2. Replacing Jn+k

2 (jk—l +2J; + jk+1) + TP+ TR — 2}
—|—4jk (jk71 + 2jk + jk+1) + 2j;§ (jk71 + ij + jk+1)
- - . k - o -
2, (J,f_1 + J,?H) ==40 (Jg_1 Ty Jg‘;l) . (2.3)

To estimate the remainder terms we define

{1, + T2} oy (2.4
[
(2.7) can be rewritten in the form
k
d,(f) — 2% — xp— = O(m}). (2.8)
2n
This equation is a particular case of the equation
(2) k B 0 ~
dk — 2%% - mxk =Tk, |T'k‘ S C/mi, (29)

where
’ﬁlk = mk+[n1/3/2}.

which we will obtain below for general V. Using (2.9) (or
(2.8))) we can find first the order of my.

Lemma 2. Let the sequence {wp}iyj<ni/z/o satisfy
equation (2.9) with my defined by (2.4) and ||
Cn~1/3 10g1/4n. Then there exist C*,L* > 0 such that
for any k:n'/?/5 > |k| > L*n'/3
iy, < O ([k]/n)"/?.

Besides, there exist C 23 such that for nt/3 < k< k*=
[n!/3log? n]

(2.10)

|z < Cyn /3= Ca/mY ot (2.11)

The proof is given in Section 3. It is based on the
following proposition proven in Appendix.

Proposition 1. Let {Z}x|<n, satisfy the recursive re-
lations:

Fpi1 — 2% + Tp_y = 205 + 7,

el < €%, |an| < e (2.12)
Then for any |k| < M — 2M; with My > 2e71/3
21| < max{e, (2M; %e1)/3},
|Zhi1 — @) < 4max{e?, (2M%e1)¥?}.  (2.13)



Moreover, if for |k| < M

Tpq1 — 2Tp + Tp—1 = frulp + T, (2.14)

with fi, > d* >0, then for |k| < M

B §0d1< > eIl gy em M H
l71<M

+|xM|edlM+k>. (2.15)

Starting from this point the proofs of Theorem 1) for
the cases of V(\) = A*/4 — A2 and general V coincide.
That is why below we will consider equation (2.9)) instead
28).

Define a continuous function g,(x), which for = €
7/n*/3 coincides with

k 1/3
qn(m):n/

L.
and is a linear function for = ¢ Z/n'/3. For x € Z/n'/?
Lemma 2] allows us to write (2.9) as

qn( + h) — 2q, () + gn(z — h)
n2
2Po(0)

gn () + 0723022 + 1), (2.16)

=2¢) () +

where h = n~'/3 and the bound for the remainder is
uniform in |z| < log® n. We are interested in the behavior
of the solution of this discrete equation which satisfies
conditions (cf. (2.10) and (2.11)):

lgn(2)] < Cla|"/?, |ga(z)] < e *""/2, & — o0(2.17)

It follows from Lemma 2! that the functions {g, ()},
are uniformly bounded and equicontinuous for any

J

bounded interval. Hence, this family is weakly compact
in any compact set in R and any convergent subsequence
converges uniformly to some solution of the Painleve
equation (1.17), satisfying (2.17). Now we need to prove
the asymptotic relations (1.18)) for © — —oo. To this aim
we use Lemma [3| below, which describes the behavior of
the Stieltjes transform of the following densities

gk,n(z) ::/M’

A—2z
pkﬂ’b()‘) = %Kn,k(/\7 )‘)a
Kui(A ) Zw PN (). (218)

Lemma 3. Under conditions C1 — C4 for any k : |k| <
n*3log® n g ir.n(z) can be represented in the form

—% (V”(O)z + V(z(o)ﬁ)

—&-%X(z) (POQ(O)Z4 + %PO(O)ZQ

gn-i-k,n(z) =

1/2
+ci — 6n+k,n(z) - 5n+k,n(2)> ) (219)

where X (z) = V22 —4 (here and below we choose the
branch which behaves like z as z — +00) and
i i,
— 4 —5/3 2
cr =+n z;) <2P0(O)qn(nl/3) + W) . (2.20)
j:

(£ corresponds to the sign of k). Moreover, the remain-
der terms dptk.n(2) and dpqp.n(2) in (2.19) forz : |z| < 1
admit the bounds

K? (A1 A2) (AL — X2)? (|k|/n)"/? +n=1/3
—92 n+k,n ’
= 2 < 2.21
|5n+k,n(z)| n / ()\1 — Z)Q()\z — Z) dAld)\g O n2|%2‘3 B ( )
< _ _ 2|5 log!/% n
|01k, (2)] < C{n 43 4 22 (n 2/3 (|k|/n)3/2) + |2° + [z[[ 1o ||%|Z|2n1/2 ] (2.22)

The proof of the lemma is given in Section 3. Remark
that, since g,(z) is the Stieltjes transform of some pos-
itive measure,

R¥ %gn+k(z) >0

Using the representation (2.19) we will show below that
for any k < —Ln'/® with L > 0 big enough the above

[
condition implies that ¢ from (2.20) satisfies the bound
|Ck| < Cn—4/3L1/3

with some absolute C. And then from representation
(2.20) we will derive (1.18). Having both asymptotic
from (L1.18]), we can conclude that g, (z) converge uni-
formly on any compact in R to the Hastings-McLeod so-



lution of (L.17), so that
Ap(z) = gu(x) —q(z) = 0, as n — oo.

But from (2.16) we derive that for any = = k/n'/? and
h =n"13 we have

h=2 (Ap(z + ) + An(z — h) — 200 (2))

= [263(@) + 26%(@) + 200 (0)a(@) + 35| D (@) + 7ul@),

()] < Cn=2/3(|z]? +1).
and uniformly in n
|Ap(z)| = 0, as v — £oo.

Proposition 2. For the Hastings - McLeod solution of
(1.17) there exists 6 > 0 such that

X = 2
2P(0) —

6¢°(x) + (2.24)

This proposition allows us to apply the assertion (2.15)
of Proposition 1l to & = A(k/n'/3) with d = n~/3§ and
7 = rn(k/n/3) with r, (z) from (2.23) The bound (1.19)
follows.

As it was mentioned above, the main difference in the
proof for the general case from the case V() = /4 —
A2 is in the derivation of the equation (2.9). For non
polynomial V' we cannot write V/(J™) directly like in
(2.2)) and therefore we need to use the Fourier expansion
of V/. To construct this expansion it is convenient to
consider J© — an infinite Jacobi matrix with constant
coefficients

Tenr =T, =1 (2.25)
and to define for any positive N < n an infinite Jacobi
matrix J(N) with the entries

Jr =

. (m
{Jn+k 1, [k <N, (2.26)

0, otherwise.

Proposition 3. For any function v(\), whose (th
derivative belongs to Lafoe] (0. = [-2 —€,2 4+ ¢€]), con-
sider a periodic function D(X) = 0(A + 4 + 2¢) with the
same number of derivatives, and such that ©(\) = v(X)
for I\ < 2+¢/2. Let also n'/? > N, M > n'/? and
J(N + M) is defined by (2.26). Then uniformly in N,
M and |k| < N for any fized integer §

(TNt kmsrrs — 0(TO
+T (N + M) prs = OM™F12) (2.27)
The proof of the proposition is given in Appendix.

Lemma 4. Let v(\) satisfy conditions of Proposition (3
with ¢ = 5, § be any fived integer and |k| < 3n'/2/4.

Then

(T ) pitmii—s = (T O)ppes — ST + 3 73(6) oA
+Y 7)1(121]; 6)Jl1 Ji, +3 73113;: [l?']ll']lZ Ji; + 7‘(6)

= 0(TO)ps — iV d + 2D+ 2P
+2 40 (2.28)

where |r,(f)| < Cmj} and Pl(i’l and Pl l l satisfy the

(2,23)b0unds:

S PRy — k) (e — k), G
> Pz?zi ) (lh — k)%, 41,

Z P(s o) (ll - k)'%h glzélz

l1,l2,l3

< Cll2]lo |17llos

< o [1llo, (2.29)

< CllZllo [19llo 11210

for any bounded sequences {Zr}, {Ur} and {Zx}. Here
and below ||z||o = maxy, |zx| and 3" means the summa-
tion over |I;| < |k| +n'/3/2

Moreover,

1 (7 .
Pl(é) =5 F©)(2cos(z/2))e du,

—T

(2.30)
with some smooth F©®)(\) and for 6 =1

1 ™
(1) / v(2cos ) cos x dz,
T om

F(U()\) =2P(\) = 2/2 (U(A)_U(“)dﬂ

—2 (A —p)/4—p?

. (2.31)
Ford:cho) =0
v(2cosxy)dxy

cos?2 xy — cos?(x/2)"
(2.32)

FO(2cos(z/2)) =

cos22<:/2> /

The proof of the lemma is given in Section (3.
Note, that if v coincides with V’ for A € o, /5, then

1 ™
(T Nppr =1 = —

/ / A)dA
dzx coSx———— =
o 2 cosxT — A

It is easy to see also that, if in (2.31) P(\) = A2P,(\),
then for any Zj

Z Pigl)ljl

where

(2 cosx) cos x dx

=1.(2.33)

Z Pok—1(Zi41 + 22 + Z1-1), (2.34)

1 (" )
Poy = — Py(2cos(z/2))e" d.
T

—T



Let us seek J;, in the form (cf (2.5))

T = (=1)*z + y, (2.35)
where in order to simplify notations we denote
yr = k/(8Fo(2)n), (2.36)

with Py(A) defined by (1.11).

Now, substituting (2.35) in (2.28) and keeping the
terms up to the order m3 (recall, that by definition (2.4)
yr = O(m2), d,(cl) = 0(m2)), we get for § =1

S S P + S PNy
:*ZPOkl d()erZP(l)

+0(n~13/8), (2.37)

where we have used that P,Eljl = Pl(i)k, so on the basis
of(A.2)) with ¢ = 4 we have

SUPO =t n=

|k—1]>n1/3

Pi(k=1)/n = O(n=*/°),

Similarly

(2
by

(2,k,1) l !
Z Pll l2 o T T, +
(2,k, 1) 1 4
Z P (=) g, + O(my)
_ (2,k,1) 1+lz
- xkz Pll’l2

+2zd Z 7><2 ED ()t — k)

l1,l2
+22 1Yk Z Plillz 1)(—1)l1
(2)
+2xkzl +0(m}), (2.38)

where

(2k1

(2)
>, =2 P
By the same way

(3) ’
Z Z Pl(i’l’::}z(71)ll+l2+l3mllx12xls + O(mi)

=} Y PR 1 O(md).
Proposition 4. If v(\) = V'()), as X € 03, then

Z/PO,kfl(—l)l = 2(-1)F
Z’P&)l = 8Py(2)k/n + O(n~13/%),

148 (o, =) (- )
(2.39)

(2.40)

Z pl(12l’; b 1 hottz =1+ O(n_5/6)a
SRR — k) = O,
Z Pl(illz b 1 h = (_1)k + O(n75/6)a

Z P~ et = (—1)k (4P (0) - 1)
+0(n=1/2).

PO(O) + O<n_3/2)a

(2.41)

If o O\ = A1V/(N) for A € 0.2, then

>R = 4R(2) + 0T,

SPEEO (1)t = 2Py(0) + O(n 2. (2.42)

Substituting (2.41)) into (2.37)-(2.40) and using (2.41)),
we obtain

V(T pikman—1 =1 — (=D)*zp — gy — 3 Por_i(—1)
2 +k/n+ xi + 2y, 252) +2zpyp(—1)F

+(=1)*(4Py(0) — 1)x3 + O(m3}). (2.43)

Using this expression in (2.1) and keeping the terms up
to the order O(m3), we get

S Posoi(—1)Fd) =

4Py(0)a3 + 8Py(2)x sk + 22 307 +0(m?), (2.44)

We consider this equations as a linear system of equations
with respect to the variables (—1)'d\> for I < Ny = |k| +
3nl/3/4.

Proposition 5. Let the even function P satisfy the in-

equality P(A\) > § > 0 for A € 0. = [-2—¢,2+ €] and
PO € Ly[o.]. Let Py and (P~1); be defined as

i/ﬁ
2 J_,
1 /™ .

%/_ﬂ e** P~ (cos(x/2))dx

P, = ™" P(cos(z/2))dx
(P~ =
Assume that for |k| < Ny (Ny >n'/3)

E P_;2; =z + &g,
|7] <Ny

(2.45)

and we have a priori bound |Tx| < eo (k| < Ny).
Then for any |k| < N1/2 and any n'/3 < Ny < Ny /2

Ty = Z (’P_l)k_jgj + €k, (2.46)
[FISN2
where
lek| gc( max |sk\+N 12 max |zj|+ao)),
li— j1<N

(2.47)
and C' depends only on ||P1||y and §.

Apply Proposition 5 to the system (2.44) with ¢ = 5,
T = dff), Zr, = 0. Then we get
&kl =

4Py (0)x} + 8Py (2)wkyk + 2xk Z?) +0(m$)| < Cm3.

Moreover, since it follows from Lemma (1 that

dP| = —dV| < on =Y *t10g 40
|y, k k g



we can take g = Cn~1/4 logl/4 n. Then, on the basis of
Proposition |5, we obtain

A7) < Cmi sy k<023, (2.48)

Using this bound combined with (2.29), we get for 252)
from (2.39)

(2
m)
Therefore (2.44) can be rewritten as

Z Pok—1(
(2.49)

Now subtracting from (2.49) the same equation written
for k: =k —1, we get

z 73(0)

Using Proposition 5l for the variables (—1)ldl(3), we ob-

5

. (2,k,1)
=Tk Z 7)11 l2
k'—k

d(?’) O(mi+[7Ll/3/4]).

tain that |d )| < ka+[n1/3/2] for |k| < n'/?/4. Hence,
writing
S Pos—i(=1)'di” = di? 3 Poei(=1)! +
E/ ’Po,k,l(—l)l(d@) _ d(2))

= d](€2) > Pos—i(=1)" + O(m k+[n1/3/2])
in view of the first relation in (2.41), we get (2.9) from
(2.49)). Now, using Lemma 2, we obtain the bound (2.10))
for my, and (2.11). We are left to show that the second
asymptotic of (1.18) can be obtained from Lemma 3.
Let us take k = —[Ln'/3] with L big enough. Since it
is known (see [12]) that any solution of the Painleve II
equations which satisfies (2.17)) assumes also the bound

9 —x
< < —-L 2.50
q (.’L‘) — 4P0(0)7 T 0, ( )
we can conclude that
k2 5/2
< < — . .
0<a < +0((H/m™). @5

Now let us choose & = n~2/3P,'/%(0) and put in (2.19)
z = &C. Then (2.19) takes the form

Gt (EQ) = =V () +
%~2p0(0)x(gg)\/g4 — L2+ ¢ + QE(C),

where V is an analytic function,

(2.52)

h—k)d? = O(m? /5 /4)-

= 4Py(0)z;3+8Py(2 )xkyk—l-O(manl/SM] =

(see (2.50)), and
(GO = Py *(0)&*13k,n(EC) + 0, (EC) + O(kn~2)]
< C(1+1¢P),

for |S¢] > 1 (see (2.22)).
the quadratic equation

(>~ L+ =0.

We note, that due to (2.52) b is real and positive. Con-
sider

Let b be the smallest root of

(2.53)

g2

I, L) = 27i

j{ X (&
where £ consists of two lines S¢ = +1 and

<o ?g |¢ \X £l 9 2ag|

—b0)(¢2—L+b)
Then, using the Cauchy theorem, we get
(b7 L) =

—b)(«?
__PO(O) T b (22 e—T/2 4

+7ry +O( )

jggmkn(sc) Clac (2.54)

L+b)e < 2d¢ + 7,

—b)(¢* -

27m

<CL Y2,

(2.55)

— L+ b)e ™ de + 7y,

/ V(@2 —b)(22 — L+ b)e_””2/2dx
|z|>L—b
Po(0) 11 (b, L) + 71 + O(E).
One can prove easily that for large L

I (b,L) ~ —CoL'?0%/2,  (Cy > 0).
On the other hand,

(2.56)

572

o /6712/20 lim Sg+k,n(E¢)dz > 0.
e e—0

I(b,L) =
Thus, taking into account (2.55)
L1/2b3/2 < C/|,,";L| < C//L—1/2 = < CL—2/3

Hance, since b is the root of quadratic equation (2.53),
we have

ekl = PE(0)E* (L — b)b/4 < Cin~*/3LY3. (2.57)

The last inequality combined with (2.20), and the bound
for the first differences dgl) imply for k = [Ln'/?3], 1 =
[ ! /6111 /3]

n*4/30(L1/3) =C_f —C_k—]

ot . _
72PO(O)Z 2__J )7L+L Yo e
R W\~ 178 ona/3
i=k
=n /3 [L—l/ﬁ ((2Po(0)g3(— 1) — & + O(L™Y%))



Therefore,
lgn (= L)] = (4Po(0) 7 /2LY2(1 4 O(LT2)).

But it is known (see [12] that any bounded for positive
x solution of (1.17), which possesses the above property
satisfies also the asymptotic relations

gn(—L) = 5(4Py(0))"Y2LY2(1 + O(L™2)), 5 = sign ¢(0).
(2.58)
Hence, we have proved (1.18). Theorem [1lis proved.
O
The proof of Theorem [2 is based on the following
Proposition

Proposition 6. Consider the sequence of functions IC,, :
R? — R and for 3¢12 # 0 define

Fn(<17<2) =

= /%(tl — )Tty — Co) Tt — t2)2KCE (ty, to)dtdts, .

Assume that there exists F((1,(2) of the form

F(Ci,¢) =

with ®(t1,t2) bounded uniformly in each compact in R?
and such that for I(1 2 > 1

[Fa(C1,62) = F(C1, ) < CA+[¢)en,  en — 0, (2.60)

as n — o0o. Assume also that for any fired € > 0 and
uniformly in a varying in any compact in R

Ie(a):/lt _ alt 0l SO o(1). (261

Then for any intervals I, Is C R

(2.59)

lim

n—oo

dtl/ dtzlci(tl,tz):/ dtl/ dta®(t1,ts).
I, Iy I Iz

= //i‘y(tl - Cl)*lg(tg — (2)*1(t1 — tg)zq)(tl,tQ)dtldtg Proof of Proposition|6. Consider the integral

J

[
S¢=+1 S(a=+1

Using the Cauchy theorem, we get that for any oy 2 > 0,

J

dCa(F(C1,C2) — F

(61, e @ /2 (a2, (262

a2 eR

’//(tl —t9)? (K3 (t1, t2) — (t1,t2)) e~ (tma)?/201 o= (taa2)*/202 gy gy | < Ce,,

with C, depending on a1, as, 01,02, but independent of
n. This implies that for any Lipshitz f; and fs with a
compact support

/(tl—t2)2 (Ki(tl,tg) — (I)(tl,tg)) fl (tl)fg(tg)dtldtg — 0.
(2.63)

For any small enough e denote by fl(JrE) a Lipshitz func-
tion which coincides with the indicator xj, of I; =
(a1,b1) inside this interval, equals to zero outside of
(a1 —€,b1 +€) and is linear in (a; —€,a1), (b1, b1 +€). Let
ffe) be a similar function for the interval (ay +€,b; —¢€)

(

and fQ(ie) be similar functions for Is. Denote also

- —2
Ge, (t1,t2) = (t1 — t2) 21\t1—t2|>sl el N —to)<e, -

Then, evidently

e, (t1,12) £ (0) £ (t2) < e (tr, t2) X1, (t1) X, (£2)
< e, (b1, 1) £ (1) 1579 (12).

Integrate this inequality with (t; — t2)?K2(t1,t2), and



take the limits n — oo and then € — 0. We obtain

/ dtldtgq)(tl,tg) — O(El)
I x1Iz

< lim

T n—oo

dt1dtoIC2 (ty, t2)
Il XIQ

+ lim

n—oo

2 (t1 —t2)?
dtrdiolC (b t2) | ———— = 1) Lty —ta)<e,
I xIs €1

< f[l % I dt1dta®(t1,t2) + O(er).

But using the inequality K2 (t1,t2) < Kp(t1,t1)Kn(ta, t2)
and integrating first with respect to ¢; and then with
respect to ta, on the basis of (2.61) we obtain that

/ dtldtQIC?L(tl,tg) (51_2(t1 — t2)2 — 1) 1\t1—t2\§81
11 ><12
< 2/ dt1dtalCp (t1, 1)K (ta, t2) L1, —ty)<e,
11 ><12

S 2051 dtg’Cn(tg,tg) S 0/51.

I

Then, taking the limit e; — 0 we get the assertion of
Proposition 6.

Proof of Theorem [2. Take some fixed (1, (2 with

(1,2 # 0, denote 21 2 = Cl,zn_1/3 and consider the fine.
tion
F A1 = A2)? K3 (A1, A2)dArdA
n(C1s C2) = V21322 (A1 — o) (A1, A2)dA1dAs

\)\1—21\ Ao — 2> 7
A2)2K2(Ar, Ag)dhid)a

A1 —21)%(Ag — 21)?

(1) — p-2/3 (A —

Changing variables A\; o = t1 21
we get (cf (2.59))

(2.64)
~1/3 and using (1.20),

(t1 — t2)?K2 (1, ta)dt1dts
t1 = Gil2[t2 — Gf?

Fo(G,¢) = \YC1C5C2/

(2.65
Hence, according to Proposition 6, to prove the weak
convergence of K2 (t1,t2) to K2(t1,t2) of (1.21) we need
to check (2.60) and (2.61). Observe now that to prove
(2.61)) it is enough to show that g ,(z) defined in (2.19)
for any z = n~1/3¢ with 3¢ > ¢, satisfy the bound

~

G (Cn=1/3) 4 L2 (V7(0) + (Cn 232V )

< Cn73(I¢)? + 1),

(0)/6)
(2.66)

where C' does not depend on n and (. Indeed, if we know
(2.66)), then using the Cauchy theorem with a the contour

10

L, consisting of two lines & = +¢, we obtain the bound

/ Ko (t, t)dt < 61/2/Icn(t,t)e%tfaf/zezdt
[t—a|<e

el/? 2 K ( t)
d dte —(¢—a) /28
~ omi C/ C—t

1/ R

2 dCef(C a)?/2e 2/3< n,n((nil/g)
il

Cn 1/3

3

(V"(0) + (¢ 52V 9 (0) 6) )
= Cf{ jd¢|le= €= 2 (|¢2 + 1) < Ce, (2.67)
L

which proves (2.61). Consider F,(Ll)(Cl) defined in (2.64]).
It is easy to see that

FV(¢) = n*3800(2),

where 0y, ,(2) is defined in (2.22). Therefore, if we prove
that uniformly in 3¢ > ¢, = (logn)~'/2

IFM©Q)] < (¢ + 1),

then, using this bound in (2.19), we get (2.66).
our goal is to prove (2.60) and (2.68).

Using the Christoffel-Darboux formula, it is easy to
derive from (2.64)) that

Fa(G,G) = (J)?[SRnn(2) SR 101 (22)
+JRn7n(Z2)%Rnfl,n71 (21)
_Z%Rn,nfl (21)\(\9Rn71,n(22)]7

2<J,S’21>2[j§13n,n<<1/ VU LRy a(G /)

dG

Ry m(2) :/ N

is the resolvent of 7™ (R = (J™ — 2)~1).

Let us study first the case when in (1.16) § = 1. Con-
sider the Dirac operator A defined in Ly(R) x L2(R) by
the differential expression (1.23))-(1.18). Let R, g(z, y; ()
(o, B = 0,1) be the kernel of the operator R(¢) =
(24 — ¢)~!. It means that the coefficients R4 5(z,y;¢)
satisfy the equations

(2.68)

Hence,

FY(G) =

where

NS ()

A (2.70)

(Ro,o(z,y;C)
=0(z—y)
(Ri(z,y;0)
=d0(z—y)
(Rio(z,y;¢) =0

(Ro(z,y;¢) =0
(2.71)

d
Z%Rl,o(x, Y; ¢) +2q(x)Ruo(w,y;¢) —

d
—2%72071(% y;¢) +2q(x)Ro,1(x,y:¢) —

—QdERo,o(x, ¥;:¢) + 2q(z)Ro,0(z,y; C) —

2R (@, 0) + 2q(@) R (2,55¢) —

(2.69)



Here 6(z) is the Dirac d-function and, e.g., the first equa-
tion means that the Lh.s. is equal to zero, as x # y and
2R110(.’E + O7 ZL’) - 273170(% - 0, .’E) =1.

Consider a semi infinite matrix with entries

2k + « 2m+ﬁ.c)

* k
n+2k+a,n+2m+8 — <_1)( +m)Ra,B (

ni/3 ' p1/3
(2.72)
where —n < k,m < oo, «,0 =0,1. Define
D:=(J™ —2)R* —I. (2.73)
Then
R=R"—RD. (2.74)

Lemma 5. Set M = [n'/3log®n].
k,m < M,

Then for —M <

Dngjnikl <Cn723 3" (14 ¢ + (7)) [Ras(z, 55 Q)]

a,3=0,1
[Dpgkmik] <Cn7Y3 3" (14 [¢] + ¢(2))[Ra,p (2, y; O,
«a,3=0,1
(2.75)
with x = fjf@y = W, and |0u.8.km| < 2.

v then

Moreover, if DM) = {Dn+j,n+k}§\7/[k:

Cn~—1/3 3/2
Do) < S (1 + (i )™) L 2o)

The proof of (2.75 could be easily obtained from the
definitions of R*, representation (1.16]) of Jé"_gk and equa-

tions (2.71). The proof of (2.76)) follows from the bound,
valid for the norm of an arbitrary matrix .4

MNP < max 3 | Ai]-maxy [ Aigl, (2.77)
J %

(2.75)) and the bound for the resolvent of the Dirac oper-
ator (see [14])

/ Res (@, )2y < CISC| S Rar (s 25¢) < OS¢,
(2.78)

To replace D by D) in (2.74) we use the following
proposition

Proposition 7. Let J be an arbitrary Jacobi matriz ,
with |Jj j4+1] < A, for all j such that |j — k| < M. Con-
sider R(z) = (2 — J) ™1 with |3z| < Ay. Then

| 1 —cyisalik—il . _C1_ —cylssim
Rii()l = 567 + e~ . (2.79)

S22

where C1,C% > 0 depend only on A and A;.

11

Using the bound (2.79) we derive from (2.73) that for
3, [k| < M/2 and 3¢ > log'/?n

* —clo 3/2 n
Rutjmik = R — (RDM) i+ O0(e 5 m)
= R:L+j,n+k - (R*D(M))n+j,n+k + (R(D(M))2>n+j,n+k
+O(e=cs"" ) (2.80)
Hence, using (2.75) and (2.78), we obtain that for
3l |k| < M/2 and 3¢ > log"*n

~1/3

Rotjnsre = Ry j g + 0™ /7 loghn) (2.81)

with some positive n independent p. Thus, we have
proved (2.60)) with

F(¢1,¢2) = (Ro,0(0,0; ¢1)R1,1(0,0; C2)
+R0,0(0,0; ¢2)R1,1(0,0,¢1)

—2R0,1(0,0 +0;C1)R1,0(0 40,05 ¢2)), (2.82)

where  we  denote
limg— 40 Ro,1(0, 7, C1).
tral theorem (see [14]),

ROJ(0,0 + O,Cl) =
But, according to the spec-

Va (3 1) Ws(y;t)

dt
2t —¢ ’

Ras(,0) = / (2.83)

where W(xz;t) = (Yo(z;t), ¥i(x;t)) is the solution of
the Dirac system (1.23), satisfying asymptotic conditions
(L.24). The last two relations and the formula of the in-
verse Stieltjes transform yield

B(ty,tz) = (21) 72 (U1 (0;t1/2)W(0;t2/2)

—Wo(0;:2/2)04(0:/2))%.  (2.84)
Moreover, since Ry, ;j(n"1/3¢) and R;+j,n+k(ﬁ/n1/3) are
analytic functions for ¢ > 0, taking the circle of the
radius $¢/2 centered in ¢ as a contour of integration and
using the Cauchy representation for the derivative and
(2.81)), we obtain for (¢ > 210g1/2 n

d

- d
dfCRn+j7n+k(C/n1/3) = dicR;kL—‘rj,n-‘rk‘(C/nl/s)

+0(n"31logP* n) (2.85)

Using the representation (2.83) and taking into account
that U, (x;t) are smooth function with respect to ¢, ac-
cording to the standard theory of the Cauchy type in-
tegrals (see [16]) we get that the d%R;ﬂ’nJrk(C/nl/?’) is
uniformly bounded up to the real line. Therefore we ob-
tain (2.68) and prove the assertion of Theorem 2/ for | = 2.
For others | we study by the same way



.

Fn(cl,...,@):/ St — )

=1

Now, mnotice that the (¥o(z,t),¥i(z,t)) —
(= (z,t), Po(z,t)) gives us the solution of (1.23)
with potential ¢;(z) = —¢(x) but does not change the
expression (1.22)). This completes the proof of Theorem
2.

To prove Corollary 1 we split the expansion for the
Fredholm determinant in two parts: with m < N and
m > N (m is the number of variables in the correspon-
dent determinant). Using the Hadamard bound for de-
terminants with m > N and then (2.67) it is easy to see
that the second sum possesses the bound CV /N!. Hence
using Theorem 2| we can take the limit n — oo in the
first sum and then take the limit N — oco. Relation
(1.25)) follows.

3. AUXILIARY RESULTS

Proof of Lemma 1. We introduce an eigenvalue distri-
bution which is more general than (1.4), making different
the number of variable and the large parameter in front
of V in the exponent of the r.h.s of (1.4):

k

Plen(A1, k) = Zk_ﬂll H )\m)2 exp H e V(%)
1<j<m<k j=1

(3.1)

where Zj, is the normalizing factor. For k = n this

probability distribution density coincides with (1.4). Let

ﬁk,no\l) = /d)\g...d)\k;l?km(/\1,...)\k)7

ﬁk,n()\l,)\2) = /d/\g...d/\kpk)n()\l,...)\k) (3.2)

be the first and the second marginal densities of (3.1).
By the standard argument [15] we obtain
ﬁkm,()\) = k_lKk,n()\a )‘)7
Ko (N N) Ko (1, 1) — K, (A 1)
k(k—1) ’

(3.3)

ﬁk,n(Av :u) =

where Ky, ,(\, 1) is defined in (2.18)). Remark also that
- n

pk,n(/\) = Epk,n(/\)a

where py , is defined in (2.18). Taking any twice dif-
ferentiable and vanishing outside o9, function ¢(\) and
integrating by parts with respect to V', we come to the

Yty —ta) ...

12

(t1 — t)Kn(t1,ta) .. Kn(ty, t1)dty .. . diy

identity
/ VNt (Vo)A = & / P (V)6 (VA

(3.4)

The symmetry property pn(A, @) = pg,
implies

A
/ ﬁk,nu,u)f’(_LdAdu . / ﬁk,n<A,u>mdAdu.

¢/
k-1 ()
1ok / ,MAM ud)\d

n(p

) of (32)

This allows us to rewrite (3.4) in the form

[V Nanoar = [ pae i

Lkl 6(N) — o(n)

dp.
P

ﬁk,n()‘v )u’)
Now, using (3.3) and the fact that

/ K2, (0 p)dp = Kpn(O ),

we can rewrite the last equation as
/ P(A
A—p
= [V )paNONN +51n(0) =0,
where we denote

bn(0) = 523 [ (400 + 0

2w) K2, (0 w)dAdp.

n ()‘)pk,n (p’) d/\d:U

(3.5)

Subtracting from (3.5) the relation obtained from (3.5)
by the replacement k¥ — (k — 1) and multiplying the
difference by n, we obtain:

2 / Wﬂ(u)[wé”)(A)]QdAdu
= [V WP+ 850) + 57 0) = 130

where
500) = / e\ " (V) ;i"><u)(</>’u>+¢’<u)
_2¢(>\>)\ : z(u))w\d#

500 = [ PO ) — o) 0P
—L [ (A)]2dA.



By Schwartz inequality

1/2
@1 < 21160 ([ K20~ Pinin )
12 o
( JO ,i")m))?dAdu) < %91l
. . ke —
55 ()] < 155 ()] + =] ”'||¢||

log'/* n Ik n|
< (101101 2E " + o2,

where the symbols ||...||o and ||...||2 denotes the supre-
mum and the Ls-norm on o.. Here we have used the
result of [5], valid for any smooth function ¢(u) defined

on o,
‘/cﬁ(u)pn,n(u)du—/¢(u)p(u)du‘

< Cl|¢|I3*)1¢l1y *n =2 10g* n

(3.7)

where the symbol ||...]|2 denotes the Lo-norm on o..

Now we are going to use (1.3) in the second integral in
the r.h.s. of (3.6). But since this representation is valid
only for A € [—2,2] we need to restrict the integrals in
(3.6) by some oz = [-2— &, 2+ €] with some small £ > 0.
To this aim we use

Proposition 8. Consider any unitary invariant ensem-
ble of the form (1.1) and assume that V() possess two
bounded derivatives in some neighborhood of the support
o of the density of states p. Let also o consist of a fi-
nite number of intervals, p(\) satisfy condition C4 and
p(A) ~ C(a*)|\ — a*|'/? near any edge point a* of o.

Then there exist absolute constants C,Cy,e9 > 0 such
that for any positive Con~'/?logn < e < gy and for any
integer k : |k| < n 4 n'/? the bounds hold:

/ Prn(N)dA < e—nCs7 / (w](cn)()\))Qd)\ < e~nCe,
R\o. R\o.
(3.9)

This proposition was proved in [3]. It allows us to
restrict the integration in the first three integrals of (3.6))
by oz with & = Con~'/?logn. Now we can use (L.3).
The error, which appear because of this replacement is
of the order O(€), because V'(A) is a smooth function in
oz. Hence, (3.6) can be rewritten in the form

2
2/05(1/112")0))261A g j)(_ﬂip(u)du

=50 (6) + 50(9) + O(llllon~?logn).  (3.9)

Take ¢(\) = Py (A)(A — 2)~! and substitute in (3.9).
Then, according to (1.13), we get

> [ wora [ A,
o o (= 2)(A = p)
+ S,ER;L)(Z) + 0(|Sz) "' logn),

=69(2) (3.10)
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where 6,(€Rn)(z) and S,an)(z) have the form (3.7) and due to
(3.7) satisfy the bound

C Clk—n| Clog/?n
s ()] < 5 (2)| < :
| k,n (Z)l = n‘gz|27 | ( )| = ’I’L‘%ZP n1/2|%2|2
(3.11)
Thus, using the fact that
z 12 \/4 — p? d V2 2 2
,u— + (25 22+ X)) —
) (p=2)A=p) A=z

we get from (3.10)

Rio(2) = = (22 + ax = 010 (2) = 310 (2)
+O(\%z|_1n_1/zlogn)) é, (3.12)
2222 —4
where Ry, ,(z) is defined in (2.70) and we denote
ay = / A2 (A)]2dA — 2 (3.13)

Let us assume that a; > Cn_1/210g1/2n with C big
enough. Then, using the bound (3.11) and the Rouchet

theorem, we get that Ry, 1 (z) has a root in the circle of ra-

. 1 .1/2
dius 5a,

(2.70),

centered in the point ia,lc/ 2, But, by definition

%Rk’k(z)%z > 0, (314)

s0 Ry, 1(z) cannot have zeros, when Sz # 0 and therefore
we get that for [k —n| < n'/2 ap < Cn=Y*log'/?n
Similarly, if we assume that a; < —Cn~1/4 logl/zn we
get that SRy, 1, (5|ax|'/?e™/6) > 0, which also contradict
o (3.14). Thus, we obtain that

lag| < Cn~*1og?n, |k —n| < n'/? (3.15)
From (3.13) and (3.12) we find
T2+ ()7 = [ N (0)%d
=2+ ay,
()2 + ()2 (3.16)
HODPOR + PO = [ X o)2ay
¢*d¢
=¢ R
ﬁ k(C) 2m
logn
= 6+ 2a; + O 1/2)
Using here the first equation for k := k + 1 to express
(J,gi)l)Q and (J, Jm" 'v5)? through (J,En)) we obtain
R R
Jp =1+ 5 + 1
1/2
ax4+1 + 2a; + agp—1 logn
+ 5 +O(n1/2) (3.17)



Combining this relation with (3.15)), we get the first state-
ment of Lemmall. The second statement follows from the
first one and the first equation of (3.17).

g

Proof of Lemma 2. Relation (2.9)) can be written as

Tp = wkk(QPo(O)n)_l + 7k,
7| < C. (g |k|/n + M), (3.18)

4P = 243 + 7,

where C, is independent of N,n and we always can
choose C, > 1. If my, < k~! for all k > n'/3, then (2.10)
is fulfilled. If my > k! for some k > 4n'/3, we can
apply Proposition Il to {z;}jj<a, with M =k, M; =
[n'/3/2], & = C, (Thk+2M1(k +2M,)/n+ miHMl),
€1 = My42u, , because M > 2/35*1. Then, since

261 M % = 8iyonr,n” 23 < Cutgyonr, (k+2M;) /n < €3,
we obtain by (2.13) that

8e% = 8C, (Mtans, (k +2My1)/n+ miony, ) = my.
Therefore at least one of the following inequalities holds

8C.ktan, (k+2My)/n > mi /2 V 8Cumi oy, > mi /2

(3.19)
Since according to Lemma/ll [my yopr, | < Cn~1/8 logl/4 n
the second inequality yields

Mpgton, > 2My (3.20)

If the second inequality in (3.19) is false, then the first
one holds. Write it as
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Assume that for some k > 4nt/3

min/k > 40C,. (3.22)

Then (3.21)implies (3.20) and
M ons,n/ (k+2My) > 4 (min/k)-(k/(k + 2M)) > 32C..

Hence, we can repeat this procedure [ times with [ =
[logn]. Then we obtain the inequality

~ 1 ~
Tt flog niar, > 208 i,

which contradicts to Lemma [I. Thus, (3.22)) is false and
we have proved (2.10).

To prove (2.11) take any ko > n'/3 denote &), = Th—2kq
and, taking into account (2.9)), apply (2.15) with M = k.
Then since f > (ko/2Py(0)n) we obtain (2.11)).

O

Proof of Lemma | Choose M = ¢n'/?, where the con-
stant c¢ is small enough to provide the condition

dCse < 01/7, (323)

where Cq and C5 are the constants from (A.5) and d =
7(2+ ¢)~!. This condition and (A.5) guarantee that for
any 1,1 : |l = 1" >n!/3/6 and any j : |j| < M, |t| <1

|(eitdjj(0))l vl < CedC2M—Cr|I='|/4 Ce—Cln,1/3/42.
sann, = (16C,) i (min/k) (k/(k+n'/%)) (3.24)
(3.21) Applying (A.3) three times we get (2.28)) with
J
P = Vo Jr/ dsidsy ) vj(ijd) (eijdslj(o)E(l)eijdszj(g)) ;
s1+s2=1 j=o0 k,k+6
M © ©) ©
P2k _ / ds:dsad (iid 2( i7ds1 T p(ln) ijds: T (i) ijd53;7°) ’
1,02 P 51052053 j;M vj(ijd)” (e © c ko k46
- © © ©) ©
(3,k,0) _ - N3 [ ijds1 T 1) jijdsa T l2) ijds3 T (1) LijdsaT
o lals = /F,S:1 dsy...dsy ‘ZMUj(Z]d) (eJ 1T ) gijdsa T p(l2) gijdss T p(ls) pijdsa )k,k+5’ (3.25)
: =
l © ©) © © ©)
.. 0) ~ . ~ .. ~ .. 0) ~ . =
r® = Z /P dsy...dss Z v;(ijd)* (6”(151‘7 Jetids2T 7 JetidsaT 7 Jetidsad T 7 eiidss (T +‘7))k s
11, la si=1 j=—M ,

+/ ds1dss Z v;(ijd) (e”dslj(o) JN(eijd”j(O) — eijds2(‘7(0>+j)))
S1+s2=1

|51>M

where we denote by E() a matrix with entries:

El(cl)m = 5k,l5m,l+1 + 5k,l+15m,z.

ko k45

(

Using the Schwartz inequality, we have

1/2 1/2
T (wa) (ZW) <c
7 J

J#0



Hence, using again the Schwartz inequality, we obtain

B . )
| < mikd® Y Ll mad Y il
il <M 5]>M
< Cmj 4+ Cm M™% < Cmj, (3.26)
where the last inequality is valid because of the choice of

M and (2.4).
To obtain (2.29) we use the representation (see [1]):

- 1 K )
(ez]dsjm))k L= — / ez]ds coszez(k—l)xdx _ Jk,l(jds),

’ 2m
(3.27)
where Jj(s) is the Bessel function. But it is well known
(see, e.g. [1]) that the Bessel functions satisfy the follow-
ing recurrent relations:

kdn(s) = ; (JkH(S) T (s)) .

Thus, e.g., the first sum in (2.29) can be expressed via
the terms

> ol [
lgl<M st
’
Z Jk*11+043 (djsl)‘%llJllflz+a4 (dj82)glz']l2*k+a5 <2j83),

J

d81d82d83(dj81 + Oz1)(dj81 + Oég)

FW(z) =

15

where aj, ... a5 can take the values 0, +1, £(6 + 1). It is
easy to see that any of these sums can be written in the
form:

(e13d52T " X (0a) gigdsaT @y (ea) giddsad Py L

Xlil = Ok,a+1Tk, Yk(,(lx) = Ok, a+1Uk;
where evidently
IX|| < mas |z, (V]| < max|g.

Hence, similarly to (3.26) we obtain

5 -
’Z 7’112/2 )ll_ )xllyl2

< CllEllo 31l > 1d*lv;| < ClIE[lo [1§]o-
ljl<M

The other inequalities in (2.29) can be proved similarly.

We are left to prove (2.31). Due to representations
(3.25) and (3.27), we derive that P(®) can be represented
in the form (2.30) with

F(ﬁ)

Z 73 zlz

Using (3.25) and (3.27) we get

1 T s
1 . )
C(l)+§ (Zjd)’Uj/ d81§ 471—2/ / ezl(—:c1+3c2+;c)(1+e—z(x1+x2))
- 0 i —m J =7

J
-exp{2ijd[si cosxy + (1 — $1) cos xo]| }da dxy

v(2cosxzy) — v(2cos(xy — x))

(3.28)

w1
- a +2w/,w

cosxq — cos(zy — x)
1+ cos(2x; — x)

(1 + cos(2z1 — x))dxy

1 I
= cg)—&-%/ v(2608x1)<

Representation (2.32) can be obtained similarly. Lemma
4! is proven.

O

Lemma |4 combined with Lemma 2 give us a useful
corollary

Corollary 2. For any even function ¢(\) which has three
bounded derivatives on [—2 + £,2 + ¢]

T sy [ G < 0 (k1) 40720
(3.29)
O

Proof of Proposition |4. Let us remark first that all
limiting expression in the r.h.s. of (2.41) and (2.42) cor-
respond to infinite sums over j in the definitions (3.25)

. cosxy — cos(xy — )
= P(2cos(x/2)) + P(—2cos(x/2)).

N—

1+ cos(2x1 + z) d
x
cosxzy — cos(xy + )

and infinite sums with respect to all I;. The estimates
for the remainder terms, which appears because of the
restriction of summation in (3.25) over |j| < M, were
obtained already in the proof of Lemma 4. And the re-
mainders, which appear because of the replacement of
infinite sums by sums over |l;] < Ny, can be estimated
by O(e 7C1n1/3/12) due to (3.24).

compute infinite over [; sums for

Thus we are left to
7;(2,16,5) and 7;(371676)

l1,l2,l3

The first relation in (2.41) follows immediately from
(2.30)) and (3.28)). To obtain the others let us consider an

infinite Jacobi matrix J (™) with J,g?rk)_l = J,gi)lﬁk = (-1
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3k1)

and define To compute the sum for P, ") " let us observe that

Vi(a,0) = V'(aT° +bT )y ki 19

a (A2 — 4b%)1/2 Z 7)1131]; }3 1)fatls — E%Vk(l b)
727‘(’(@2 ) V(N s1gn)\7( POITE dA Llals b=0
k 52
)12 _ (-p*o* 1 1)
27r a2 — b2 /V 1gn)\ BTEIYE dX. (3.30) D) bt
It is easy to see, e.g., that where
1 62 2\1/2
PEED (L)t = 22y (q,b) R R PP (4=
; b TGRS 16 = 5 [ (V') =2V (0)siemh 5=k
PAV(NAA 1?7 VI(A)dA 1 / (4 —\2)1/2 " )
— —— =1 = — V/\bln/\id/\—V 0)(1—5%).
-5 [view s Lo 3 ),V NS e 0@~
Herfe we have used (1.14) and (2.33). Differentiating this expression, one can easily get the ex-
Similarly pression of (2.41)).
1 92 To prove the last relation in (2.41) we use the symme-
Z 731(121]2 (- nh = 3% (%V w(a,b) = (—=1)". try arguments. Indeed, according to (3.25)),
a=1,b=0

l1,l2

(k) = Y (PR + PEED) 1) = Sutia® [

d81d82d83 (Usl (k — ll)f52,53 (k — ll)
Is j s1+s2+s3=1

+u51(k_l1_1)f82,83(l1 — k1 _1)+u81( )f51 82( )+us1(k_l1+1)f81,82(l1 _k1+1)>’

(

where O

. 0
us, (k —1) = (ewd‘glj( ))k—h Proof of Lemmal3.
fsz,s3 (l — k') = (_1)l(eideQJ(O)j(ﬂ)eijdsgjw))l,k
Substituting in (3.5) ¢(A) = (A — 2)7! we get easily
Since both us, (k —1) and fs, s, (I — k) are even functions  the equation
with respect to (I — k), after integration with respect to
S1, S2, 83 we get that

hk,11) = h(k—11) = h(l,—k :thll k—1) ) )/V’()\

Borin)+ [V sV = brpin() (331
To prove (2.42) we define similarly to (3.30)

Vk(o)(b) = 0@ (FO 4+ 7™, 4

_1/ VI signh
~ 7 ), @ - NPX ()

with 0,44, (2) of the form (cf. (3.6)

1 V'(A) — AV"(0)) signA
T / ( ((4132 - /\)1/(2))()()\) A+ V70). (Jr(:‘r)k)Z 2 2
7 Ontkn(2) = Tz ((R Jntkn+k (2) (B ) ntk—1,n4k-1(2)
Then
Lo — (R kngn—1(2)) (3.32)
(2,k,0) litle _
P, (=)™ = Vk (1,b)
lzl: hta 2 b2 b=
_ 2 2 (VI(A) = AV"(0))dA — 2P (0) where (R?);; = (z — J™).2 ;- Here we have used the
T 5 A3X () T At Christoffel-Darboux formula i 1n the numerator of the in-



tegrand in (2.22)). Let us define

V')

F(z):= N~ Prtkn(A)dA

~Gnikn(?) <zv”(0) + z3v(46)(0)>
+ <V”(0) +z2V(4é(0)> / Pk (A)dX
+é/\3v(4)(0) / Ak (N)dX

Using in the first integral here the representation

1 1 z 22 23 24

v e twtuatianTy

and taking into account the evenness of the functions
Pn+k.n and V, we get

V(A
>(\ )anrk n()‘)d)‘

VI(A) = AV"(0
+z2/%pn+k,n()\)dk

—|—z4/ V(N — /\\/(;’((S)__/\)é)\l%v(@ (0) k(A

= c,(cozl + 22056221 + z4c(4) 2 (2).

F(z) =

(3.33)

Denote

Vi) = V(i)
AN)=[| —F——= du.
Q) / - p(p)dp
Taking the limit n — oo in (3.31) and using (1.13)), we
get for any A\ € [—2,2]

NEEN(A2 = 4) = [V (V]2 = 4Q(N)
1
=Q(\) = 1 (V'O + X PF(A) (4 =A%) . (3.34)
Therefore, denoting v(®)(\) = V/(\)A~1, we get
o) =Q0) +& + o = &0 + e, (3.35)
where
&0 = / VO (M) (0 (A) = p(A))dA
k|
=4n ! Zu@) T ™) ptjimsj- (3.36)

Here and below in the proof of Lemma (3| the sign + cor-
responds to the sign of k. Repeating the argument of
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Lemma 4 for the function v(®)()\), we obtain

2,k,0
Z Pl(hlz )( 1>ll+l2

L] |l2]<[k|+nt/3

Y P o (/)

|l |<|k|+nt/3

= 2,(0)a2 + -+ 0 ((k/m)*2).

U(O)(j(n))nij,nij = x?

Thus, using (2.42), we get (2.20). Now let us observe

that

V'(\) — AV"(0) 1P 1,
| TR0 = g e =50
Hence,

L
1
chon = (V"0 +&2 £07" 3 0P (T sy,

j=1
where
VB ) = (V) = AV (0)A2,
42 =[O0 (3) = o)A
Using Corollary 2 from Lemma 2, we get

v (A)dA
Vioa
= Py(0) + O (k| /n) + O(n=2/%),

VT ) nsknn = +O (k| /n) +O0(n~2/%)

since

VBN 1d2/ V') = VIG)dA | _ o
Viee 2de? ) gAY
Therefore

N

1
2, = (V007 + Po0) + O (/%) + 2. (3.7
Now we apply (3.7) to
V/(A) = AV"(0) — 2A3V(4)(0)

v(4)()\, z) = TP

We get

o) () = / v (A, 2)p(\)dA (3.38)

k| 1/2
) .y |2llog"" n
(m s 2)ntjnts + O ( |2 [2nl/2

12,0(4

_ Q(4)(0) 2| log"/ n 2|k
=S5 - +t0(@+0 REETE +0 Sl

1 / 1 |Z‘ logl/Qn
= (24P2(0) + 2V (0)V"(0)) + O(2) + O () :

Tl |Sz[2nt/2




where the last equality follows from (3.34). Collect-
ing (3.35)-(3.38) we obtain from (3.31) that for Sz >
n=3log /2% p

V@
g?%,—'rk,n(z) + Gntkon(2) <ZV”(0) + Z3V6(0)>

" (4)
st (20 + DO o) - - et

+220 ((k/n)3/2) +12P|32 20 (n*I/Q log!/2 )
Solving this quadratic equation, we get

VA0

1 —6( )> + (= F5(0)2"

—3 <ZV"(O) +2z
k

) 1/2
—7P0(0)Z —CE + 5n+k n( ) — §n+k7n(z)> (339)

gn+k,n(z) =

with ¢, defined by (2.20), 0,44 ,(2) defined by (3.32) and

(7))

+0(2°) + |2]°|32| 20 (n_1/2 log!/? n) .

Onikm(z) =80 4 2262 4 22 (O(nil) +0

Since (2.19) follows from (3.39), we are left to estimate
65?)7 Eg?) and 6n+k,n(z)‘

Taking into account (3.32), to estimate d,+x (%) we
need to estimate (R?),ikntk and (R%)niknik—1. Let
us take N’ = k +log® nn'/3, and consider J (N') defined
by (2.26]) and

ROG) = (= TO = FV)
Then, using the resolvent identity
H'— Hy'=H;'(Hy — H)H;" (3.41)

and (2.79), we get for any z : Sz > n~1/3
(Z)| < Ce—C’logzn.

|(R2)n+k,n+k(z) -
(3.42)

Applying the resolvent identity (3.41) to RO — (z —
JO) =1 and RM(z) defined above, we get

IR\ (2) —

(R(l)R(l))k X

RO)L(2)] < [RO(2)J(N')RW (2))k ]
(Ikl/m)/2 4 =212

<
REk

Now, using the Cauchy theorem and the above inequality,
we obtain

[((RWRM) 1 (2) = (RO RO 4(2))|
1 RELO) — RO
i T
[z2—(|=IS2]/2

(Ikl/n)"/2 +n~ /3

|Sz[?

<C

(3.43)

(3.40)
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Moreover,
___z
(22 — 4)3/2°

2
0) p(0 _
(RO R Ners1(2) = _(22 — 1

(RORO), 1 (2) = —

are bounded for |z| < 1. Hence, substituting (3.43) in
(3.32)), we get the first estimate in (2.22]).

To estimate &) and &7 we subtract from (3.31)) the
same equation for k := k — 1 and multiply the result by
n (see the proof of Lemma [1] for the details). Then we
get

29n+k,n(2) Rntk,ntk(2)
= [ZO e qpar -5, (). 349

z

where

n+k n( Z Rtk (2) Rjnsi(2)
n+k
- Z Rn+k J j n+k(2)~

Using the same trick as in (3.42), we get

CACREOLHEL

k
SRRPELHE

+O(e—Clog n)'

Besides, since R,(Coz(z) is an even function of (j — k), we
observe that

1 oo 9 k
0= 3 RIGRNE) -~ > RO(RIRS(:)

j=—o00 j=—o00

1, o
+=(ROL(2))%,

3

Hence, to estimate 5 +k (%) it is enough to estimate the
dlfference between r.h.s. of the last two formulas. Using
that for |z| <1

|R§?;2| < Ce—ﬁzﬂj—]ﬂ7
we get

5P ¢

ntkn (2] < S TRIRE e (3.45)

Now performing transformations (3.33)) for the integral
in the r.h.s. of (3.44), we can rewrite it as

— V®(0)2*/6)
(3.46)

Rtttk (2)(20n+k,n(2) — V7(0)2
=a)2? —al) + 800 L (2) + Oz,



where
al(c(?zt = U(O)(J(n))nJrk,nJrk

= 2n72/3Py(0)¢3( f/3

L2
2n
o = v (T, pnik = Po(0) + O(n

)+ —+0(n),

—2/3).
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Let us take £ > 0 and change the variable z = £¢ with
€2 = k/Py(0)n in (3.46). Then, using (3.39), we obtain
from (3.46)

Rn+k,n+k (50 =

In view of (3.45)
2500 — 0, as

with any fixed d (see (3.45)). Besides, ¢2(x) — 0, as # —
00, because of (2.11). Therefore there exists some fixed
lo > 0, such that for k > lgn'/3 and any ¢ : S¢ > 1/4

1/3

n k o R -
2PO(O)TQ721(W) +E72P] 1(0)57(L+)k,n(€0‘
1 , ) 1’
< =< min —+ —.

4 je-i/v2=1/4 2

Then according to the Rouchet theorem Ry (¢) has a root
inside the circle B of radius 1/4 centered at i/+/2. Thus,
it R3(¢) has no roots of the second order inside B, then
similarly to the proof of Lemma 1l we obtain a contradic-
tion with (3.14). Therefore, using the first inequality of
(2.22)), (3.40) and (3.45)) we conclude that there exists an
absolute constant Cy, such that

&) [ED P < Con™*?

These bounds and (3.40) prove the second estimate of
(2.22).
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APPENDIX A: SOME PROPERTIES OF JACOBI
MATRICES

Proof of Proposition |3 Using the spectral theorem and
Proposition 8, we get

’U(j(n))n+k,n+k*5 - @(j(n))n+k,n+k76

‘/ ffl)k(/\)%bfgk_a(/\)d/\‘ < Ce e,

/3 ~ — ~
¢+ § +2Po(0) g () + € 2B (00,0, (B0 +o(1)  Ry(Q) )
72T 12 :
. - _ = - - R
2 <g4 + ¢4+ E B 2(0) (e + Onkn(E0) = dntn(C)) ) 2 (©)
[
Let us represent 0(\) by its Fourier expansion
B(\) = LS Al
(V) j;oo o (A

Then we have

Z Ujeijdj(") +O(M‘”1/2),

il <eM

oo
D= 3 weiar
j=—00
(A.2)
where ¢ is some absolute constant which we will choose
later. The bound for the remainder term in the last for-
mula follows from the estimate

s<

>

ljl>cM

1/2 1/2
|vj|2|j|”) ( ) |j|-2‘*)
[j|>eM

< O lz(er) =12,

Consider now N’ = [N + M]+1 and denote by JN")
the matrix whose entries coincide with that of 7 with

the only exception J iN,I nin41 = 0. We will use the
Duhamel formula, valid for any matrices J1, Jo

t
etT2 _ it — / =T ( Ty — T1)e*P2ds  (A.3)
0

Let us take |k| < N and apply (A.3) to jéi)k ks and
jéi’g;)_s_k_é. Then we get



(T pskmin—s — (T kmihs
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t
ijd(t—s) g mND n) s 7 (™)
:/ ds Z sz ((e” (=7 )n"'kv"iN/jn(,:l:N’,n:I:N'—l(618‘7 JnEN'—1n+k—6
0

lil<M  *

iid(t—s) TN n is.7 (™) —
+(eWdt=9)T )n+k,niNu1\7,Ei)N/,1,niN,(e 7 )n:tN/,n+k6>+O(M er1/2), (A4)

Now we use the bound, valid for any Jacobi matrix J
with coefficients Jy k41 = Jry16 = ar € R, |ag| < A.
Then there exist positive constants Cy, C1, Cs, depend-
ing on A such that the matrix elements of e**7 satisfy
the inequalities:

|<€itj)k,j| < 006—01|k‘—j‘+02t. (A.5)

These bounds follow from the representation

. 1 o~
(€ kg = 5~ leltsz(z)dzv

where R = (2 — J)~!, and from (2.79).
Using (A.5) in (A.4), we get for any ¢ < Co(C1d)~!

U(j(n))n+k,n+k76_v(g7(n7Nl))n+k,n+k76 = O((cM)=*+1/2),

Similarly (see definitions (2.25) and (2.26))):

V(T O+ )k k—s—0(T "N s mghms = O((eM) ~H1/2),

These two bounds give us (2.27).

O

Proof of Proposition[1. Assume that |Zj| > € for some
k. Without loss of generality we can assume that 2, > 0.
Then due to (2.12)

Tht1 — 2T + Tp—1 > .f?i

Consider first the case when also ci,(cl) = Tg41 — Tk > 0.

Then by induction for any M —k > i > 0 we have a~l§€1_zz >

dy, Tp4i > Tp and dfjl > 73. Hence
€1 > TpyM, > Tk + JZ‘%M12/2

If cZ,(Cl) < 0, then according to (2.12) we have Z_j_1 >

Zr, and we obtain (2.13) moving from k in the negative

direction.

Similarly, assume that at some point |k| < M — 2M;

d~§cl) > dmax{e?, (2e; M 2)?/3} =: 4p%. (A.6)

Since \J,gz)| < 33 because of (2.12) and the first inequal-

ity of (2.13), we have for any |i| < o = [2/(Bp)] <

2/(3e)] < My

di), > A 12 = > Era| > dody) /2 = 3u~ "y,

(

where s = signZ,. The last inequality here contradicts
to (A.6). Hence, (A.6) is false and we obtain the second
inequality of (2.13).

To prove (2.15) observe that if we consider two (2M +
1) x (2M + 1) Jacobi matrices J) and J(@ with entries

J@ = p(d) _ ()
DY) =61;2+ fr), DY) =62+ d?), |k <2M,

J = pl) — jO),

then, using the Neumann expansion for their inverse we
get

0< (D)) < (JD) ) < @t (A7)
Hence, rewriting (2.14) as
(JD &) = =71 + OoamTonrer + Ok —amTan—1,

we get (2.15) from (A.7).

O

Proof of Proposition|7. We use the estimate for matrix
elements of the resolvent of an arbitrary Jacobi matrix
J, with entries |7 j41] < A:

CL  _cliss|k—j|
IRi.i(2)] < @6 2 7,

(A.8)
This estimate is similar to well-known Combes- Thomas
estimates for Schrédinger operator (see e.g.[19]).

Let J®* M) be the Jacobi matrix, whose entries

coincide with that for J with the only exceptions

(k,M) (kM) - , -
jk:i:M,k:tMJrl = JktM+1,k+M — 0, and RKM) — (z _

J#FM))=1 Then, by the resolvent identity (3.41)

(k,M kM
Rij— Ry ) = Z R](C,ki])\/[jkiM,kiM'-&-leiM-&-l,j
¥

k,M
+R;(€7;;i1)\4+1jk:tM+1,k:tMRk:tM,j) .
Since J M) has a block structure, its resolvent R (<)
also has a block structure and its coefficients R,&kj’.M) do
not depend on J; ;41 with |j — k| > M. Hence, we can
ke, M ke, M kM
apply (A.8) to Ry, REGY), and REGY),
get (2.79). Proposition [7|is proved.
O
Proof of Proposition |5 We would like to consider the
system (of equations2.45) like a linear equation in l5. To

Then we



this end we set

2]@ = Z 'Pkflfil, ék = O, ‘k| > Nl.
[1|<Ny

Then it is easy to see that
|2k < [|Plleo,

and it follows from (2.45) extended for all £ that with
above zp, £ that

Be=Y Pz +a). (A.9)
l

Moreover, since by condition of the proposition P has
¢th derivative from Lo[—2,2], P~! also has fth derivative
from Ly[—2,2]. Therefore, using (A.2) we have for any k

_ —(4+1/2
ST P < Ny
|l—k|>No

(A.10)

Using this bound in (A.9) we get (2.46).
O

APPENDIX B: PROOF OF PROPOSITION 2

. It is evident that it is enough to prove (2.24)) for the
case when 2P, (0) = 1 in (1.17)) and (2.24). Hence, below
we consider this case. For x > 0 the statement is evident.

To prove it for x < 0 remark first that if for some
1 >0

Ai/(il'l)
Az(xl) ’

q (1)
q(z1)

then since for z > 0 ¢”(z) > zq(z) we have that for
T > T

q(z) > y(=),
where y(z) is the solution of the initial value problem
y'(21) = ¢ (z1).

y'(z) = zy(z), y(21) = q(1),

But according to the standard theory of the differential
equations, the last problem has the solution

y(z) = ¢1 Ai(z) + 2 Bi(x)

21

with

¢ = WA, Bidg(a1) Ai(z1) <q’($1) _ All(xl)) >0,

where W{Ai, Bi} = Ai(z)Bi'(x) — Ai'(x)Bi(z) = 71
(see [1]). But then g(z) > y(x) — o0 as ¢ — oo, that
contradicts to (1.18). Hence we conclude that for z > 0

(log q(x))" < (log Ai(x))",
and since it is known (see [12]) that ¢(z) = Ai(z)(1+0(1))
as r — 400, we obtain that

q(0) > Ai(0) = 0.355028... > 32/3/6,

(for Ai(0) see [1])
For x < 0 set

and let zg be the first negative root of f. It is known
that g(z) > 0, ¢'(x) < 0 (see [12]) and so

V=0/6 = q(x0) > q(0) > 3°//6 = zo < —3'/%/2.

But for any point z < zy < —3'/3/2 in which ¢(z) >
—x/6

¢"(2) < Vol — /) < —2 /a6

<- (4 6(—1;0)3)71 < ( —x/G)H

Therefore f”(x) > 0 for & > xy. Since by definition
flzo) =0, f'(x0) < 0 (because f(0) < 0 and x¢ is the
first root of f) we conclude that f(z) < 0 for any z < g
that contradicts to (1.18). Thus we have proved that the
left hand side of (2.24)) is always positive. But since it
tends to infinity as * — Zoo, we conclude that there
exists positive d, satisfying (2.24]).
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