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Abstract: We present a version of the 1/n-expansion for random matrix en-
sembles known as matrix models. The case where the support of the density of
states of an ensemble consists of one interval and the case where the density of
states is even and its support consists of two symmetric intervals is treated. In
these cases we construct the expansion scheme for the Jacobi matrix determin-
ing a large class of expectations of symmetric functions of eigenvalues of random
matrices, prove the asymptotic character of the scheme and give an explicit form
of the first two terms. This allows us, in particular, to clarify certain theoretical
physics results on the variance of the normalized traces of the resolvent of ran-
dom matrices. We also find the asymptotic form of several related objects, such
as smoothed squares of certain orthogonal polynomials, the normalized trace
and the matrix elements of the resolvent of the Jacobi matrices, etc.
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1. Introduction. Problem and Main Results

Random matrix theory is an actively developing field that has a wide variety
of applications (see e.g. the review works [20,16,23] and references therein).
Among numerous random matrix ensembles studied by the theory and which
have important applications the ensembles with the unitary invariant probability
distributions (known also as matrix models) play a significant role [15,22]. This
is, in particular, because of numerous links of the ensembles with the theory
of orthogonal polynomials, potential theory, the theory of integrable systems,
and other domains and techniques of analysis and mathematical physics. These
ensembles consist of n xn Hermitian matrices and are defined by the distribution

Po(M)dM = Z;' exp{—nTrV(M)}dM, (1.1)

* On leave from the U.F.R. de Mathématiques, Université Paris 7
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where Z,, is the normalizing constant, V' : R — R satisfies the conditions
(i) for some e > 0 there exists Ly > 0 such that
VNI = (2+ €)log|A], [A] = L1, (1.2)

(ii) for any 0 < Lo < oo there exists v > 0 such that

V) = V(A)| < CIA = Aa|?, Aa| < Lo, (1.3)
(iii) there exists m > 0 such that
/|V’()\)|e_mv(>‘)d)\ < o0, (1.4)
and .
dM = ] dM;; [] dSM;pdRM;y,. (1.5)
Jj=1 i<k

The asymptotic regime that we study is intermediate between the global regime
(see e.g. [8,12]) and the local regime (see e.g. [24,13]) and the respective results
are important in studying the central limit theorem [17], universal conductance
fluctuations [6], and the universality of the local eigenvalue statistics at the edges
of the support of the density of states (IDS) of the ensembles [25].

Let us recall the definition of the IDS. Denote by )\gn), o, A the eigenvalues
of a matrix M of the ensemble and define the eigenvalue counting measure
(NCM) of the matrix as

Np(A) =A™ € A}-n !, (1.6)

where A is an interval of the spectral axis. According to [8] the NCM tends
weakly in probability as n — oo to the nonrandom limiting measure N known
as the Integrated Density of States (IDS) of the ensemble. The IDS is normalized
to unity and is absolutely continuous if V' satisfies the Lipshitz condition (1.3)
(with possibly different constants C' and ) [27]:

NR)=1, N(A) = /Ap()\)d)\. (1.7)

The non-negative function p in (1.7) is called the Density of States of the en-
semble. The IDS can be found as the unique solution of a certain variational
problem [8,12,27]. The IDS is one of the main outputs of the study of the global
regime.

Let us state now our main conditions.

Condition C1. The support o of the IDS of the ensemble consists of either

(i) a single interval:
o=la,b, —co<a<b< oo,

or
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(il) of two symmetric intervals:
0 =[-b,—a]UJa,b], —o0<a<b< .
and V is even: V() =V (=A), A € R.

Remark 1. Tt is easy to see that changing the variables according to M' = M —
a+b

I in case (i) we can always take the support o to be symmetric with respect

to the origin. Therefore without loss of generality we can assume that in this
case
o= (—a,a) (1.8)

Condition C2. The DOS p(A) is strictly positive in all internal points of o and

behaves asymptotically as const|\ — c|1/2, A = ¢, in a neighborhood of each
edge c of the support. Besides, the function

u(A) = 2/10g | — Aldu — V(X) (1.9)

achives its mazimum if and only if A € o. We will call this behavior generic
(see e.g. [19] for results, justifying the term)

Condition C3. V()\) is real analytic on o, i.e. there exists an open domain
D C C such that 0 C D and an analytic in D function V(z),z € D such
that

VIA+i0)=V()\), M€o.

Note that we always have the one-interval case (i) if V' is convex [8], [17] or if
it has a unique absolute minimum and sufficiently large amplitude [19] and we
always have the two interval case (ii) if V' has two equal absolute minima and
sufficiently large amplitude[19].

As for the condition C3, it is the case in many of the quantum field theory
[15] and of the condensed matter theory [6] applications.

The following statement, known in several contexts, provides a sufficiently
explicit form of the IDS in our cases.

Proposition 1. Let an ensemble of form (1.1)-(1.5) satisfy conditions C1-C3
above. Then its density of states p has the form

1

PO = 5o xXs (P X 4 (N), (1.10)

where x5 () is the indicator of the support o of the IDS, P()) is analytic in D
(including o) and

vaz — N2, |A| < ain the case (i),

X+ (0) = {sign M/(A2 —a2) (b2 — A2), a < |A| < b in the case (ii). (1.11)

Besides, the Stieltjes transform

o) = [P az 20, (1.12)
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of the IDS can be represented in the form

9(z) = %(V'(Z) - X(2)P(2)), ze€D, (1.13)
with

2) = V2?2 —a?, in the case (i),
e { V(22 — a?)(22 — b?), in the case (ii),

and we take the branches of the square roots, which are analytic everywhere
except o and have the asymptotic X (z) = 2P(1+ O(z71)), 2 = oo withp = 1,2
for the one interval and for the two interval cases respectively. P(z) in (1.13)
and in (1.10) can be represented in the form

(1.14)

1
P() = 3 [ Qe 0XT (O (1.15)
where L C D s a closed contour encircling o, and
Q(z,¢) = %Z(O (1.16)

The proof of the proposition will be given in Section 3. Here we remark that
in the two-interval case the contour I consists of two connected components
encircling each of intervals of o.

We need also several facts on ensembles (1.1)—(1.5) (see e.g. [7,20,22]).

Denote by pn(Ai1, ..., A\n) the joint eigenvalue probability density which we
assume to be symmetric without loss of generality. It is known that [20]

paAas ) =270 I = )% exp{-nD>_V(\)}, (1.17)
1<j<k<n j=1

where Z, is the respective normalization factor. Let

pl(n)()‘la---:/\l) = /pn(/\la---;)‘l;/\l+1;---/\n)d)‘lJrl---d)\n (1.18)

be the Ith marginal distribution density of (1.17). The link with orthogonal
polynomials is provided by the formula [20,7]

(n—=1)!

P O e M) = S det 1k (O, M) (1.19)
where
kaOp) = 3 0™ (™ () (1.20)
=1

is known as the reproducing kernel of the orthonormalized system

DM (A) = exp{—nV(N)/2}p" (V). 1=1,..., (1.21)
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in which p(")()\), [ =1, ... are orthogonal polynomials on R associated with the
weight

wp(\) = e "V, (1.22)
i.e.
/ P 0P (A)wn (A)dA = 6pm- (1.23)

The polynomial p( )( A) has the degree I and the positive coefficient in front of

Al. The orthonormalized functions w( )( A) verify the recurrent relations

T ) + @)™ ) + S )™ ) = ™ (), =1, (1.24)

where Jo(n) = 0. In other words, we have here a semi-infinite real symmetric
Jacobi matrix

T (1) = {Jim (1)} i5m=1, (1.25)
Jim(n) = q(n)d1,m + Ji(n)0141,m + Ji—1(N)61—1,m.
Note that if V()) is even, then ¢;(n) =0,1=1,.....
As in statistical mechanics the symmetrized marginal densities (1.18) allow us
to complete the expectation with respect to measure (1.1) of random variables

of the form
(A5 s An ngm P VI ) (1.26)

where ¢, (t1,...,ty,) is symmetric in its arguments and ), denotes the sum
over all choices of m A\’s from the set ()\1, e, An)- By using (1.19) and noting that
the semi-infinite matrix {gb;")( ) (A} %=1 18 the density of the resolution of
identity of J(n), it is easy to show that E{w,,} is a linear combination of the
matrix elements of ¢, ((J(n))®™) (see e.g. formula (2.78)). This observation
makes J(n) an important object of the theory. That is why our main result
(Theorem 1 below) yields the 1/n-expansion of entries of 7 (n). Besides, we give
the 1/n-expansion of the expectation

gn(z) =B{n"'Tr(z = M)~'}, Sz #0,

of the normalized trace of the resolvent of the random matrix M and the variance
of this trace. These quantities are of considerable interest by themselves and are
also important technical ingredients of the theory.

Theorem 1. Let the ensemble of the form (1.1)-(1.5) satisfy conditions (1.3),
(1.2), and C1-C8 above. Take a sequence of positive integers N (n) and an integer
m > 0 such that

N(n)n=/m+Y 0, N(n)log™>n — oo, asn — oc. (1.27)

Then there ezist coefficients q,(;?%,. ,q,(le), J,g?%,... IETL), |k —n| < N(n) and
analytic outside of o functions gé )( ), ...,gém)( ) such that for any k € [n —
N(n),n + N(n)] we have the following asymptotic formulas
— S (]) mz (m ) J _ N 7]‘J(j) —mz(m,J) 1.28
qk(n)—Zn T T k(”)—zn o T, (1.28)

=0 =0



On the 1/n expansion for some unitary invariant ensembles of random matrices 7

where
169, 179 < const(jk —nl +1), j=0,....p, (1.29)
D] E O] < e 50, n - oo (1.30)
and .
2) =Y n7IgP)(2) + 0T (2), (1.31)
j=0
where . .
199 (2)] < const(|k —n| +1), (1.32)

Fm9)(2) 50, n— oo

uniformly in any compact set in {z : 6(z) > d}, where §(z) = dist(z,0), d > 0 is
an arbitrary fired number and const does not depend on k,n.
In particular:

9 (z) = g(2),  gi(z) =0; (1.33)

in the case (i)

() _ o _1 1 1 (k=n)/ 1 1
qk,n - 07 Jk,n - 2047 qk’n - 0; Jk n — P + P(—a) 3 (134)

i.e. the zero order coefficients for k = n(1+ o(1)) are independent of k;

in the case (ii)
@) =0,j=01,...,

and
I = %(b — (1), or I = %(b+ (—1)k="q) (1.35)
W _(k-n)/ 1 (="
Jem = az — b2 <P(b) = P(a) >7 (1.36)

where the sign corresponds to the chosen sign in (1.35)

Besides, for m = 1 formulas (1.28)~(1.35) are valid for any k : |k —n| < n*/3
with
|k —n|>+1

k‘—n|+1 (0
—_ | 5

|~(0 7| < con5t| ’q)| < const

k_nf? 41 (1.37)

|rk | |rk |< const

Remark 2. According to (1.35) the 2-periodic function J( ) is determined by our
method up to the shift by 1. By using recent results of [13] on the form of the
leading term of the asymptotics of the orthogonal polynomials (1.23) it can be
shown that

k,n

IO = %(b —(=Dka), kE=n(1+o0(1)). (1.38)

Moreover, all subsequent coefficients J,E’r)l and g%j ), j=1,...,N(n) of the asymp-

totic expansions (1.28) and (1.31) are uniquely determined by the choice (1.35)
and by the recurrence procedure described in the proof of the theorem.
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Remark 3. The zero order coefficients q,(le and J,gf?1 were found in [2,17]. The

first order coefficients .J ,glgl (1.34) of the one-interval case were found in [14] in a
somewhat different context.

Theorem 1 allows us, in particular, to find the 1/n-expansion of the covariance

Dn(zl,zz) = E{%Tr(zl — M)ill’I‘r(Zz — M)il}

3

1 B 1 » (1.39)
—E{ETr(zl - M) }E{ETI‘(ZQ -M)"}

which is important in a number of questions of the random matrix theory and
its applications. Here and below the symbol E{...} denotes the expectation with
respect to measure (1.1)—(1.5).

In the paper [24] it is proven, that for any V satisfying (1.2) - (1.3) we have

the bound
const

n2(S21)2(S2z2)2 "

Hence, the 1/n-expansion of D,,(z1, 2z2) has the form

|Dn(21,22)] <

P
Dn(z1,29) = Zd%k) (z1,29)n 9 +0(n"P), n— o0 (1.40)
k=2
in which the leading term is of the order n—2.
Theorem 1 implies
Corollary 1. Under the conditions of Theorem 1 we have:

in the case (i) the n-independent

2 _
d® (21, 2) = — @ Az )>, (1.41)

1+
2(2‘1 — 22)2 ( X(Zl)X(ZQ
where X (z) is defined in the first line of (1.14);

in the case (ii) the 2-periodic in n

4D (21,2) = — 14 @ =)t -z
21— z)? X(21)X (2
* _)(—g& (21)X(22) ) (1.42)
2X (21)X (22)’

where X (z) is defined in the second line of (1.14).

Remark 4. The covariance D, (z1, 22) of the traces of the resolvent is of consider-
able interest in the random matrix theory since the beginning of the 90s, when
its study was motivated by matrix models of quantum field theory [1,3-5,9,10]
and later by solid state theory (see review [6] and references therein). Initially
only the one interval case was studied but later the many interval case was also
analyzed. In particular, in [3,1] a version of the large-n expansion procedure was
proposed. In the case (ii) of the two-interval symmetric potential the procedure
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leads to an expression for the leading term amplitude d®) (21, 22) that does not
depend on n and contains elliptic integrals, while our expression (1.42) is 2-
periodic in n and contains only elementary functions. By using recent results of
paper [13] on the asymptotic form of the leading term of orthogonal polynomials
(1.22)—(1.23) and our formula (2.78) below for the covariance D, (z1, 22), it can
be shown that in the general case of a two-interval non-symmetric potential the
leading term amplitude d®) (21, 25) is quasi-periodic in n and contains Jacobi
elliptic functions that disappear when one passes to a two-interval symmetric
potential. Moreover, by using the same results, it can be shown that in the case
of a potential leading to a p-interval support of the density of states the am-
plitude d® (z1,2) is a quasi-periodic function. Its frequency module contains
generically p — 1 incommensurable frequencies (but can reduce to a p-periodic
function in some special cases [11]), and its form includes the Riemann #-function
of p — 1 variables. The frequencies are determined by the density of states, and
the f-function are determined by the endpoints of the support of the density of
states of the ensemble.

Remark 5. Formulas (1.41) and (1.42) for the leading terms amplitude d® (z1, 22)
of the covariance Dy, (21, 22) depend on the ensemble only via the number of in-
tervals of the IDS support and via the endpoints of the support. This is why
this property of the covariance is often referred to as the long-range universality
[10] in contradistinction with the short range (or microscopic) universality that
manifests itself in 1/n - neighborhoods of the interior points of o and is valid in-
dependently of the number of connected components of o (see e.g.[13,24]). Thus
under conditions of these papers all the unitary invariant ensembles belong to the
same short range universality class. On the other hand, since according (1.41)
and (1.42) the leading terms of the covariance D, (z1, 22) are different in the one
and in the two-interval cases, the long range universality classes depend on the
number of intervals of the IDS support and on its endpoints.

Corollary 2. Under the conditions of Theorem 1 we have the following expres-

sions for the weak limits of squares of the orthonormalized functions w,(en) \)
with |k —n| < N(n):

ot (00) = e, 0w

where X4 (\) is defined in (1.11)

The proofs of these assertions will be given in the next section.

2. Proofs of Main Results

Proof of Theorem 1. We introduce an eigenvalue distribution which is more gen-
eral than (1.17), making different the number of variable and the large parameter
in front of V' in the exponent of the r.h.s of (1.17):

k
P ede) = Zi [ Oy =Am)exp{=n} V) (21)

1<j<m<k
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where 7 , is the normalizing factor. For £ = n this probability distribution
density coincides with (1.17). Let

prnO) = [ Dhavehipn (O, 20 (2.2)

ﬁk,n()\ly/\2) = /d/\S---d/\kpk,n()\ly )\k) (23)

be the first and the second marginal densities of (2.1). By standard arguments
[20,7] we have

ﬁk,n(A) = IN{k,n(/\a )‘)7

- k- ~ - 2.4
pk,n(/\,/lz) = E[Kk,n(/\a)\)Kk,n(N;M) _Klz,n(ka/"‘)]a ( )
where .
Kenom) = k1 0" 0™ (), (2:5)
=1
and 1/11(") ()\) is defined by (1.21). We will use the notations
k L
KO 0) =0 30" )™ (1) =~ Ko (A, ),
n
=1 & (26)
Prn(A) = Kin(XA) = Eﬁk,n(/\)-
. V(A1) . o .
Consider now E g for z, 3z # 0. It is well defined in view of condition
-\
(1.4) above. It is easy to find that
V(A1) VI (A)prn(N)
Ed——4 = [ —————~d\. 2.
{ z—M\ / z—=A dX 2.7)

On the other hand, integrating by parts the r.h.s. in (2.7) and using (2.3), we
obtain that

Vl()\l) _ 1 pN ,n()\) k—1 /3 ,n()\nu)
E{z_/\l}_g/(zk_/\)2d)\+2 n /(z—k/\)(/\—u)d)\du'

Combining these two expressions, we come to the identity

VNN oy 1 [ pra(X) k-1 P (N, 1)
/ RN = n/(z—)\)2d/\+2 . /(Z_A)()\_N)d/\d,u, (2.8)

The symmetry property pr.n(A, 1) = pr.n(i, A) of (2.3) implies

Pr.n (A, 1) _ Prn(A, 1)
/ (z= N —p) Xy = / (z = p)(A—p) My

This allows us to rewrite (2.8) in the form

VI()‘)/;k,n()\) _ l ﬁk,n()\) k—1 ka,n()\a :u)
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Now, by using (2.4)-(2.6), we can rewrite (2.9) as

Va1 [ o)
/ “ o0 <dA>_?K (A(ZYVA)Q(M
Pk,n Pkna\H) — k,n A, 1

+/ (z=N(—p)

This relation is a version of the well known loop equation of the matrix
models of the Quantum Field Theory [15].

(2.10)

Ym

We will use also

Proposition 2. Consider any unitary invariant ensemble of the form (1.1)-
(1.5) and assume that V(X\) possess two bounded derivatives in some neighbor-
hood of the support o of the density of states p and that p(\) satisfies condition
C2. Denote by o. the e-neighborhood of o for some € > 0. Then there exist
n-independent quantities C,Cy,e9 > 0 such that for any positive n-independent

€ < gg there exists e > 0 such that for any integer k satisfying inequality

k—
M < &1 we have the bounds

/ prn(N)dA < e7C%, / (@ (V)2dA < e7"C%, (2.11)
R\o. R\o.

Remark 6. The proof of Proposition 2, given in the next section, does not use
the fact that ensemble (1.1) - (1.5) consists of Hermitian matrices. Therefore
Proposition 2 is valid also for real symmetric and quaternion real matrices, i.e.
for orthogonal and symplectic ensembles with V'(A) satisfying (1.2) and (1.3).

Let us fix now a sufficiently small € such that 0. C D and all the zeros of the
function P(z) are outside of o.. Then (2.11) allows us to replace the integrals
over the whole line by the integrals over o, in (2.10). Therefore, denoting

) (A dA
9’67"(2)5/ Pin(N)dA ijz(Z)E/ Y Wem ’

-2’ - A
;o ) PN (Ndx Z_ V(o) (2.12)
Rj’m(Z):_/as (Z—)\)Q ) V(Z’C):Z—C’
we get from (2.10):
(G0 = [ T Nprn NN
|k 051 k (2.13)
3 Z Ry, (2) — 3 Z R, i(2) = en(2),
m=1 m,j=1

where e, (z) is the remainder function which appears because of our replacement
of the integrals over the whole line by the integrals over o.. Note, that since the
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Lh.s. of (2.13) is an analytic function in C \ o, e,(2) is also analytic in C \ 0.,
and admits the bound:

Co
en(2)] < , 2.14
en(2)| < 5o (2.14)
where
0:(2z) = dist{z,0.} (2.15)
and | = 2. Besides, it follows from (2.11) that
—TLCQ
Cie (2.16)

< - - @@
«l?) < SRR T

with I’ = 0.

We will denote below by {en(z)}52; sequences of functions (may be different
in different formulas) which are analytic everywhere in C \ 0. and satisfy the
estimates (2.14) and (2.16) with some nonnegative [,!' and some positive n-
independent C’s. ~

According to our conditions V(z,() in (2.12) is analytic with respect to ¢
inside D, except for the point ( = z. Hence, we can write that

/Vz/\ (N)dA
=—/dx/d<v ”’“" —2m/c ) ginl©).

where L. C D is an arbitrary closed contour which contains . and does not
contain z, and the integration over L here and below is in the clockwise direction.
This allows us to rewrite (2.13) as

(2.17)

k
(9hn(2)) 2m/1f,z<gkn Q)¢ %Z

_E Z R? (2) = en(2).

m,j=1

(2.18)

Now, subtracting from (2.18) the relation obtained from (2.18) by the replace-
ment k — (k — 1), we obtain:

21 (gi1n(2) — o [ V(e ORLs(OC
. gkt (2.19)
—R() - = Y B () = en2)

Relations (2.18) and (2.19) are our main technical tools in constructing the
1/n expansion given in the theorem. We will consider (2.18) and (2.19) as a
system of equations with respect to the functions g, (2) and R; m(2) and solve
them by iterations in 1/n.

We will need two more facts on ensembles (1.1)—(1.5).
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(a) The function g ,(z) from (2.12) and g(z) from (1.12) are related as

const log;l/2 n k—n
0a2) -0 < LZE N ot B ML

This relation follows from (2.12), (2.6), (2.4) and from the bound valid for any
function ¢(u), which grows not faster than V(") b >0 as |u| — oo

[ owontdn~ [ oo du\ < Cllg'|I5l1glls*n " 10g 2, (2:21)
where the symbol [|...||2 denotes the Ly-norm on o, (this bound was proved in
[8], Lemma 3, see also [24])

(b)
g*(2) = V'(2)g(2) + Q(2) zeD, S2#0, (2.22)
(2)
—or: | Q00 - / FEOZTN, a2
i

and Q(z,() is defined by (1.16). The relations follow from (2.20) and identity
(2.10) for n = k. Indeed, in view of (2.4) the r.h.s. of (2.10) is

gn + E{ [n—l zn:(z -7 - E{n—l f:(z - Al)—IH 2}.

=1 =1

The second term here is the variance of n=* Tr(z — M), and according to [24],
Lemma 3, this variance is of the order O(n~2). This and (2.20) imply (2.22).
Thus, the zero order approximations for g, ,(z) coincides with g(z).
To find the zero order approximations for Ry (z) for |k — n| < N(n), where
N(n) is defined in (1.27), let us note that (2.12) leads to the bounds

IS R0 < S

02 (2

The first bound follows from the definition of Ry ;(z) in (2.12). To prove the
second bound we view Ry ;(z) of (2.12) as the generolized Fourier coefficients

of the function y. ()\)1/),(6") (A\)(z — X\)~! with respect to the orthonormal system

{wl(n)(/\)}fil. Then, the Bessel inequality gives us the second bound.
These bounds imply that the last two terms in the Lh.s. of (2.19) have the
order n~!. Hence, the zero order equations for Ry (z) have the form

20(:)Rk(2) = 3 [ AVEORKO P @) +enla). (229
where the remainder

k—1
1 2
e (2) = =R 1 (2) = = >R () (2.25)
j=1

+2Ry 1 (2)(gh-1,n(2) — 9(2)) = 0, n — o0,
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is analytic in C \ 0. and tends to zero uniformly on any compact set for which
dist (z,0.) > d > 0. Besides, since by definition (1.21)

Jerroa =1,
we have from (2.11), that

= %(1—}-0(%))—}-6”(2), z = o0. (2.26)

Rk,k(z)

Equation (2.24) was already considered in [2]. However we will use here a bit
different way to analyze the equation, which is based on the following lemma:

Lemma 1. Consider the equation
1

29(:)R(2) - o

/LdCV(z,C)R(C) —0, 2eD\o., (2.27)

where V(z,() is defined in (2.12), and a closed contour L € D contains o, and
does not contain the point z. Set for z & o

W(z) = X Yz), in the case (i),
2= 2X71(2), in the case (ii),

where X (2) is defined by (1.14). Then the following statements are valid under
the conditions of Theorem 1.

1. In the case (i) equation (2.27) has the unique solution R(z) = ¥(z) in the
class of functions analytic in C\ 0. and behaving as
R(z) =z *(1+o0(1), z— oc. (2.29)
In the case (i) equation (2.27) has the unique solution R(z) = W¥(z) in the
class (2.29), under the additional symmetry condition R(—z) = —R(z).
2. In both cases equation (2.27) has no solutions in the class of functions R(z)
analytic in C\ o and satisfying the condition

lim |2?R(2)| < const < 0. (2.30)

|z|— o0

(2.28)

3. For any analytic in C\ o, function F(z), satisfying condition (2.30) and even
in the case (i), the inhomogeneous equation

2(=)R(2) = —— / dCV (2, OR(C) — F(2) (2.31)

o

has the unique solution of the form

o F()
RO = v | ro (2.52)

in the class of functions analytic in C \ o., satisfying condition (2.30) and
odd in the case (ii). Here P(z) is defined by (1.15) and a closed contour L
should be taken sufficiently close to o, to have z and all zeros of P(2) outside
of L. In particular, in the case (ii) the contour consists of two components,
encircling each interval of the support.
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The proof of the lemma will be given in the next section.

Omitting in (2.24) the error terms, we deduce from the obtained homoge-
neous equation and from (2.26) on the basis of assertion 1 of Lemma 1 that the
zero order approximation R;COI)C (2) of Ry 1(z) is ¥(2) from (2.28). Moreover, the

difference Ry, 1 (z) — ¥(z) decays at infinity as z—2 at least, and the error terms
in the r.h.s. of (2.24) decays also as 272, as z — oco. Thus, on the basis of the
assertion 3 of the lemma we can write that

Ri(2) = 0(2) + 7o (2) + enl(2). (2.33)

Here r( ) )( ) is obtained from formula (2.32) with F(z) = r,(con )( ) given by

(2.25)). Using the fact that |r,(£7’1R) (2)] = 0 as |z| = oo and that P(z) has no
zeros on L we obtain the bound

(0 R)
N(OR)( )< 27rzP / C ‘
( ) 34
27er / C (z—C) o
< ot (@?f% >|+m€ax|r<° POI) 50, 0o,

Thus, for all k such that |k —n| < N(n), where N(n) is given in (1.27) for m = 0,
we have
Ry = lim Ry p.(2) = ¥(z). (2.35)

We have also the relations following from (1.21), (1.24), (2.11) and (2.12):

o= [ MR = o [ CRuac+ 0 )

1
‘J]?; + J,% + Jffl = /)‘21/)13()‘)d)‘ = _/ <2Rk,k(<)dc + O(e—nCE)’
2mi Jp, (2.36)
(a7 + Ji + Ji_1)? + (ar + are1)*Tp + (ar + qe—1)* i1 + Ji Jipy

#R Tt = [N = 5= [ CR©dc+ o).

By using (2.35), and (2.28) for the case (i), we find from the first of the above
relations that the zero order term ¢® in (1.28) is zero. Then, combining the
second relation of (2.36) for k,k — 1, and &k + 1 and the third relation of (2.36),

we find that J,EO) = a/2. In the case (ii) the same scheme carried out for even

and odd £ leads to the coefficients J,go) of (1.35). In other words we have proved
that in the zero order in 1/n the coefficients of the Jacobi matrix J(n) defined
in (1.25) do not depend on k, |k — n| < N(n) in the case (i) of an one interval
support of the density of states and are 2-periodic functions of & in the case (ii)
of a two interval symmetric support.

To find the first order terms for these coefficients, we will study the first order
versions of equations (2.18). Note first that we have the bound

k

) )| < s +lea@l (23D

Jj=1 Jjym=1
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where const does not depend on n, z. Indeed, by using the orthonormality of
system (1.21) we can write the Lh.s. as

o [ [ dn6) = oK )+ 3 [ a3 [ dnd KR O,
n e e n o- R\o.
where ¢(\) = (z — X) 7! and Ky, (A, p) is defined in (2.6). According to Lemma
3 of [24] the first term here is bounded by const sup |¢'(A)|?/n < const /nd(z),
and according to Proposition 2, the second term is e,(z).

We conclude that the first order equation for the function

(1)

9 (2) =n(gr,n(z) — g(2)) (2.38)
has the form
1
200 (0) = 5 [VEOOQOd - ) +eale), (239
with
1 1 b
1 1
W) = L e+ 13 [— R - 3 Rim<z>]
. " i m=1 (2.40)
_ L@y =) —(1,9) const
= SEnE TG, LY E) < e

Besides, we have the normalization condition

1
gin(2) = (k=m)z" (14 0(2) + en(2), z = 00, [k=n| S N(m),  (241)
which follows from definition (2.12) of the function g n(2). Then, according to
Lemma 1, we get

A (2) = (k= n)T(2) + 70 (2) + enl), (2.42)

where the remainder F,(cl’;f) (2) has the form

—1(,(D) 2 =(1,9)
NN P | n (g4, (0)? + 7, (Q)
79 (2) = 2ﬂi)((z)./; e (2.43)
Thus, denoting
m @)= max g ()],

 {2:6:(2)>d}

where d is a positive constant, we obtain from relations (2.42) and (2.43) the

inequalit
o ) |k —nl (meh(@)® 1
my, o (d) < +C nd3/2 + nd?/2 )’

where C' is independent of n, k, and d. This inequality implies that either

2k —
[k~ nl or mgclﬂ)l(d)an?’/QC_l—FO(l).

m;cl'?z(d) < RFICRE
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But the second inequality here cannot be true, because it was proved above that

“Imi") (d - 0
nmn (@ = max (=)~ 9(2)| -

for any k such that |k —n| = N(n), where N(n) is given in (1.27) for m = 0.
Hence in view of (2.43) we get that for {z : d.(z) > d}

3 k —n|? 1
|r,(€17;f)(z)| < const <| — | + nd9/4>' (2.44)

Substituting now representation (2.42) in the r.h.s. of (2.43), and using bound
(2.44), we get finally

_ (k-n) Y(2) + O(|k — n|*n=2d=%/) + O((nd®)™"),  (2.45)

o w2(Q)
YO = 5w RO o

1 1 1
_ 1 %(P(a)(z—a) a P(—a)(z+a)>’
X(2) 1 az bz

(a? — b?) (P(a)(z2 —a?) P2 - b2)> ; (i)

We have obtained the first order term in the 1/n-expansion for g, x(z).

(4),

(2.46)

Now we need a lemma, that will allow us to replace Ry, ;j(z) in (2.18), (2.19)
by a certain simpler expression constructed from the coefficients q,(fgl, J (Jr)l, j=
0, ..., p found during the previous p steps of our expansion process and to estimate

the error of this replacement.
Lemma 2. Take N(n) = [log®n] and let Ny(n) be such that
Ni(n)n= Y+ 50, (Ny(n)) ' N(n) = 0, asn — oo. (2.47)

Assume that for any k : |k—n| < Ni(n) we have found the coefficients q( ). ,q,(cp),
J,go), ey J,gp), satisfying bound (1.29), and such that (1.28) is fulfilled for m = p.

Here and below we omit subindex n in the coefficients q,(f"gl, J,EJT)l of the asymptotic

formula (1.28) of Theorem 1.
For any s such that |s| < 2/n consider the (2N; + 1)-periodic symmetric

Jacobi matriz J®)(s) defined by the entries
I =g Zs] o =g = ZSJJ D k=n| < Ni(n). (2.48)
Denote by R®)(z,s) be the resolvent of J)(s), and set

RU(2) = Jl;—R P(z,8)|sm0, SV (2 ZnﬁR(] (2.49)
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Then for any L > 0 there exist positive n-independent quantities Cy and Cs such
that for any k satisfying the inequality:

|k —n| < Ny — 2N = Ny(n), (2.50)
and for any z € o., |2| < L
|[Re(2) = S| |- Ria(2) = (8- 8P)(2)] <
27 CINPH Gt N (2.:51)
Z(z)nP S ()t 0(2)[S2P

k

Z R Z S(p
m=1
25%1)) Cy fH e—C2d:(2)N (2.52)
= 02(z)ne - P ()t 0(2)[Sz)?
1k k L
B [— R = Y Bim(2)] = 2 30150 50)5(2)
Qo " - i (2.53)
Z S(p QE%p)Nl ClNlp‘i‘ 6_0265 (2)N/2
= 62( )np+1 654—1 (z)np+2 |%Z|3 )
where . (z) = dist{z,0.} and eP) = o(1), n = oo (see (1.30).
The proof of the lemma will be given in the next section.
Consider the function
R (2) =0 (Bia(2) = BO(R)) (2.54)

with R{)(z) defined in (2.35). From (2.19) and (2.42) we get the first order
equation for Ryy:

1 n
29(2) R () = 5 / AoV (2, OR™ () = F{"(2) =il (2) + en(2).
(2.55)
Here
F() = 28 ()0, (2) + (RO - RO —22

R denotes the resolvent of the double infinite Jacobi matrix J(©) of the zero
order coefficients {J,EO)}kez, and

- 2 n
ren (2) = 2RO (2) + SR (2)gin (2)
k—1 k—1
# [ R (2) = (RO RO 0(a)] 2| S0 = SR 2.
=1 i=1
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By using the translational symmetry of the resolvent R(®) and the exponential
d}(lacay of its matrix elements R;% in |j —m]|, as |j —m| — oo, it is easy to show
that

(BORO), (92 3 (R)(2) Rus@F ves o
RO-RO) 1 (2)-2 3 (RN (2))? = T )? = (Ji2h)?
(E72 ) (B + )p(i)k‘) + en(2), (i)

This relation, and formulas (2.42), and (2.54) imply that

[2(k —n) — 1]P2(2), (1),

R O F = i
n z X0

where the sign in the case (ii) corresponds to that in (1.35).

In addition, bound (2.45), and the fact that nilRS’}en) (2) = 0,asn — oo (see

formulas (2.54) and (2.33)—(2.35)) imply that the first two terms in the r.h.s. of

(2.56) tend to zero as n — oo. And on the basis of Lemma 2, one can conclude
that the last two terms there also vanish as n — oo. Therefore r,(;;LR) (2) = 0 as
n — 0o. Then on the basis of Lemma 1, and similarly to (2.38) - (2.46) we get
for all k such that |k — n| < Ni(n), where Ny(n) is given in (2.47):

Wy J 20k —n) = 1Y (2) + 77 (2), (4),
Fea(2) { 20k —n) — 1Y (2) £~V (2), (i), (257)

where Y'(2) is defined in (2.46),

1 / d¢
27rz'X(bZ) L P(OX*(O(z =)

T2 -2\ Pa)(2—a?) PO)(2— b2)>

Y #)(2)

and the remainder function F,(i;lR) (z) is

2k —mBk—m) =Wy ) o=ty L od) ),
~1(€17}lR) (2) = 2(k — n)[3nk —n) 1]17(2) +9( 1)k—n(k n)f’i(z)
rolk _3n| ) +0(=), (i)
(2.58)
where
o1 Y (Q¥(<)
B = 2mix () /LdCP@(z - Q) (259
= L /dCY (Q¥(Q)
21X (2) Jp P(O)(z )
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Now in the case (ii) we take the first order terms with respect to n~! in equations

(2.36) (recall that the diagonal coefficients q( ) are zero for all k). We obtain the
relations

1 J,
I = s | R Qe+ 1y

L
A )+ T T (52 + (T3g4)°)

250 T3y

q

a1 (2.60)
ﬂ”égaé?{é£+égéﬂq+ﬂmégl+é)(éia
_ ip (1,J,4)
= 557 [ C RS (g i,
where k = 2q, |k —n| < Ny(n), N1(n) is defined in (2.47) for p = 0, and:
(1“)—/42 Q)d¢ =0, n— o,
(2.61)

,(jn“)—/'g o B (0yd¢c -0, n— occ.

Consider also the two analogs of the first equation in (2.60) with 2¢ replaced
by 2¢ — 1 and by 2¢q + 1. These relations and (2.60) comprise a linear system
with the unknowns Jé?_w JQ(;)_I, JQ(? and JQ(;LI. The system is uniquely soluble

for J2q # J2q 1, and its solution is specified by (1.36), and its remainder terms

satisfy the bounds (1.37).

©) _ jo

However, for J,,/ = ; this system is degenerated. Thus, in the case (i) we

cannot use the system to find coefficients J,g T)L In this case we use first identity
(2.36) that yields the following relation in the first order

o = = [t
L

This and (2.57) yield that q,(cl) = 0. Furthermore, the first equation in (2.60) for
Ty = JO | = a/2 s, in view of (2.57) and (2.58), has the form

a(J + D) = 20k —n) — IO 4272,
. 1 1 1
() = 2 (_~ 4 _ -
I‘©<H@+PP@>

Iterating this relations starting from k = n it is easy to obtain the one-parameter
family of solutions

(2.62)

aJtV = (k —n)ID — e(=1)F " 717D, (2.63)

where
k—n

(1,J e (1,0,2
Tl(c n )= Z(_l)k Jril—i-jm)a

=0
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Substituting expression (2.58) for f,(cl’;f)
(1,7,2)
Tk,n

(z) in (2.61) and using the resulting

(z) in the last relations, we obtain the bound

E—nl>?+1 |k—nl°
|F,(£;l‘])|§c0nst<| nf”+ +| | >

- = (2.64)

This leads to (1.37) for the case (i), if |k — n| < n?/3.
To fix the parameter ¢ in (2.63) we use the relation known in random matrix
theory as the string equation (see e.g. [15]):

I [ VOWL el ix = 7

The relation can be easily obtained from the identity

!
(e p ) dx =,

We use this relation in the form

2 [ VO R (Qde =1+ 0, (265)
i Jq,

following from Proposition 2. The first order equation which follows from (2.65)
has the form

(0) (1)
e [VORD i+ e [ VIORD, =0

By using (1.34), (2.33), (2.57), and (2.63), we get a linear equation with respect
to c:

DWe— AW =, (2.66)
with

DO = 1t [ VIR, A+ 5 [ VIOEO TR i (O

AW = g / V(QOR®, 1 (0)dC (2.67)
L

n7
a

+2 /L VI(QORO - 70 ROY, (),

where J* is the symmetric Jacobi matrix with coefficient Jf = (=1)"~* and
J(*) is the symmetric Jacobi matrix with coefficients defined by (1.34).

Lemma 3. Under conditions of the theorem A% = 0, DY £ 0 and equation
(2.66) has the unique solution ¢ = 0.
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The proof of this lemma is given in the next section.
By using the lemma we find the first order terms of our expansion in the case
(i) given in (1.34).

Now we will prove (1.31) and (1.28) by induction. The scheme of the in-

duction procedure will be as follows. Assume that we have found coefficients

(0) (») (p+1) (2)

q s qy and J,go), . J(p) Then we can find the p+1 correction g,/ and

estimate respective remainder 7 “{p"_ 9) from the (p + 1) form of equation (2.18)
(see equation (2.70) below), in Wthh we use the functions g( )( ), - ,g,(cp)( ) and
R,(c(;e) (2)y ey R(p)( ) found previously. Then, by using the (p+ 1) form of equation
(2.19) (see equation (2.73) below), we determine R(p)( ) and estimate respec-

tive remainder ?ff:l’m Finally, we find the coefficients q(p+ ), and J,gpﬂ) and

estimate respective remainder by using the (p + 1) form of relations (2.36) and
(2.65).
To realize this scheme we first write the asymptotic relation:

P
gen(2) = Zn_jg,(c])(z) + n_pfl(f;lg) (2), r,(f,’f) (2) >0, as n— oo (2.68)
=0

valid for all k such that |k —n| < Ny(n). Let matrices RY)(2), j = 0,...,p be
defined as in Lemma 2 (see formula (2.48), (2.49)). Then, denoting

g,gp;l_l)(z) =nPtl <gk,n(z) - Zn*jg,(ej) (z)) , (2.69)

7j=0
we obtain from (2.18) the equation of the (p + 1)th order for g(p+1)( ):
2020 (2) = 5 [ V00l (e

. ) i), (2.70)
—FT(z) - Tkpn (2) + en(2),

where

p—1

k 00
P-‘:—Lg) Z (p+1— l) + Z Z ZRP - 1) R(l) ( )
m=1 j=k+1 (=0
oy 1
=n " gl ()
p
+2g(p+1 anl (l) Z an*l*"g,(f)(z)g,(f)(z)
LU =104+ >p+1

ngp:-lag) (2)

(2.71)
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with S{*) (2) defined by (2.49). On the basis of (2.68), (1.28), and Lemma 2 we
conclude that the relations

|FPT9) (2)] < conmst ([k — nfPt! 4 1),

and )
rfcp: ’g)( )—=0, as n— oo,

are valid uniformly in {z : é.(z) > d}, for any fixed d > 0, because by the

46) = 1)

induction assumption (2.68) we have that n = Gy n(2) = 0asn — oo.

Then Lemma 1 leads to the relations
gt (2) = gV (@) + AP (2), (2.72)

where for (0:(2) > d > 0)

P = o | BP00) g, g D) < ootk — ™ +1
9p = 5 = 2% 9y z)| < cons n
and

- const
R @) < iy n ™ @+ ma nE QD

Now, denoting (cf. (2.69))
R;:;:Ln) (Z) = pPt! (Rk k Z n ]R(] >

we get from (2.19) the equation of the form (cf (2.55))

20(RY @) = o [ Ve 0RO

(2.73)
—FPT () =P (2) 4 en(2),
where
p k oo p
FF0 e =S s @ + (Y- X ) YRR,
1=0 j=1 j=k+17 I1=0

p
rP () = 2R ()Y n gl (2)
P , - k
S np“—l-lgé’h(z)R,ﬁi,Z(z)+np—1[(—R'<z>k7k—2Z<Rk7m<z)>2)
LU=1,0+U>p+1
k
((5(10) Sy —9 Z S(p ﬂ

By the virtue of (2.68), (1.28) and of Lemma 2, we conclude that the relations

[FPT (2)] < const (Jk — nfPH + 1),
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and

,(cp:;lR)( )—=0, as n— oo,

are valid uniformly in {z : §.(z) > d}, for any fixed d > 0. Using again Lemma
1, we get
RE(2) = RPV (2) + 720 (2), (2.74)

k.k
where for 0. (z) > d

1 F(p+1 R)
RV () = %/LWC(O)CK’ IRZ(2)] < const (Jk—n["* +1). (2.75)

and

~(p+1,R) const (p+1,R) (p+1,R)
e < Sy (P e+ ma 2P ).

Now, as for the first order approximation case, in the case (ii) we take the (p+1)
- order terms (with respect to n™!) of equations (2.36) for k = 2q :

1
205 I+ I I = 5 [ CRER) Qg+,
(0) ;(0) (Jégo) Jéptl);r i )701>J((§+11)>)((J(§0)) ( (1J2(q)120>) (p+1)
+1) + +1) +
+2J5, Jog— 1 ( o~ 1Jp +Jy, 2§+1 Js ng 1+ 1J2q ) =
,J,
¢ zq*;?(odurg;“ Y,

(2.76)

where F,gp+17J’2) and F,gpﬂ’JA) are the coefficients at n?~! in the r.h.s. of the
second and the third equations (2.36) which we get, substituting there J, =

P o
Zn_JJ,EJ), and
=0

T2 = /42 LR ()¢ — 0, n — oo,
r,(gp+1J4)E L( r,??IlR)(OdC—)O, n — oo.

Consider also the two analogs of the first relation of (2.76), in which 2¢ is replaced

by 2¢—1 and 2¢+1. These relations together with (2.76) comprise a linear system
with respect to the variables JQ(ZH_;)’ Jéf;"’}), JQ(ZH) and J(p+1) For J(O) # J2(2) 11
i.e. in the case (ii), the system is uniquely soluble and the solutlon satisfies

condition (1.29) in view of (2.75).
However, for J(O) = J(O) , this system is degenerated and so in the case (i)

we cannot find J,gp'H) from the system. Therefore similarly to (2.62)—(2.64) for
the case (i) we obtain the one-parameter family of solutions

JPHD et qyken i“ N (2.77)
where
k—mn ‘ k—n
Bt = 3D Al A = 3 (),

=0 =0
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with 1
a"tV = it 2_/ CZREc{)ljl)(C)dC’
™ J,

To fix the parameter ¢ we use again identity (2.65) and Lemma 2. Then we get
the equation for ¢ of the form
i (0 _

DWe — Ayt =0,
where, as usually in perturbation theory, the coefficient D'(") is the same in each
order of the procedure. Thus, in view of Lemma 3, D) is nonzero and the
parameter ¢ is uniquely defined by this equation. By the same argument as in
the case p = 1 it is easy to see that in view of (2.75) q,(fﬂ) and J,Epﬂ)satisfy
bounds (1.30). Theorem 1 is proven.

Proof of Corollary 1. By using general formulas (1.18 )-(1.25 ), (2.12 ), (2.14
)—(2.16) and the Christoffel-Darboux identity for orthogonal polynomials it can
be shown that the covariance (1.39) can be written as

] A — p)2E2 (A, p)dAd
Dn(zhzz):_/ (A — p)" k5 (A, p)dAdp
2 (21 =Nz — ) (22 — A)(22 — p)
2 2 (2.78)
_ Jnfl 5Rn+1,n+1 6Rn7n . 6Rn+1,n + ( )+ ( )
= n2 oz s 52 enl?1 €nl22),

where k, (A, 1) is defined in (1.20) and we denote 0Ry ; = Ry j(21) — Ri,j(22)
and 0z = 21 — 2.

Then, on the basis of Lemma 2, we conclude that the amplitude d? (21, 22)
of the asymptotic formula (1.40) is:

(0) 0 (0) 2
d? (21,22) = (J(o) )2 6Rn+17n+1 5R$L,)n 3 6Rn+1’n
n ) n—1 52 52 5 .

According to Theorem 1 and Remark 2 after the theorem the zero-order

coefficients J,go) of the Jacobi matrix J(n) do not depend on k (k =n(1+o(1)))
in the case (i) and are 2-periodic functions of k in the case (ii). Thus, we have
only to compute the matrix elements of the resolvent of the constant Jacobi
matrix and the 2-periodic Jacobi matrices whose coefficient are given by (1.34)
and (1.35) in the cases (i) and (ii) respectively. The computations are standard
and lead to (1.41) and to (1.42).

Proof of Corollary 2. The weak convergence of (1/),(?) (\))? is equivalent to the
convergence of its Stieltjes transform

(n) 2
[ oy o

uniformly in z on any compact set of C\ R.. According to (2.12) and Proposition
2 the Stieltjes transform (2.79) is Ryx(2) + en(z). Now the asymptotic formula
(2.33) implies that the Stieltjes transform (2.79) converges to ¥(z) as n — oo
and dist{z,0.} > d > 0. This fact and the inversion formula (3.2) yield the
result.
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3. Auxiliary results

Proof of Proposition 1. For the proof of weak convergence of measures N,, and
(1.10) see [8]. Furthermore, it follows from equation (2.22) that in D g¢(z) can
be written as
V'(2)
2

where Q(z) is defined in (2.23). Since

VY —1Q0), (3.1)

p(N) = -1 lim Sg() + ie). (3.2)

T e—40

we conclude that p(\) satisfies the Holder condition. Thus we find from the real
parts of (3.1) that:

ppdu _ V'(A)
L] ————=——, A€o
P o A— M 2 ’ €7
Regarding this relation as a singular integral equation and using standard facts
(see [21]), we obtain (1.10) in which

P(\) = %/Q(A,M)Xll(u)du-

and Q and X7 '(u) are defined in (1.16) and (1.11). It is clear that P()) can be
analytically continued into D and can be written in form (1.15). Since g(z) is
uniquely determined by its boundary values on ¢ and its asymptotic behaviour
is g(z) = 271(1 + 0(1)), as 2 — oo, we obtain the assertions of the lemma.

Proof of Proposition 2. According to the result of [8], and our condition C2, if
we consider the function u(z) of the form (1.9), then u(z) = C* (z € o) and
u(z) < C* (z € o). It is easy to see, that at all endpoints a* of o there exist one-
side derivatives u/; (ax) ( we take the right derivative for the right endpoints ax
and the left derivative for the left endpoints), and these derivatives are nonzero.
Set C; = § min |u/; (a*)| and consider the function

0, T € o,
Vl(l‘) = 015, x € R\O’E, (33)
+C(z — ax), 0: \ 0.

In the last line here we take plus for the right endpoints and minus for the left
endpoints of the spectrum. It is easy to see, that we can always choose £¢ so small
that for any ¢ < gg the function uq(z) = u(x) + Vi (z) also takes its maximum
value C* on o.

Consider now the following functions of (z1,...,z,) € R" that we will call
Hamiltonians because their role below will be analogous to that of Hamiltonians
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of classical statistical mechanics (see [8] for this analogy):

n
Hy(z1,...,2,) =n Z Vi) —2 Z In|z; — ;]
i=1 1<i<j<n
n
HY (z1, ..., 2,) =nV (1) + nZV(ml) -2 Z In|z; — ],
i=2 1<i<j<n
n
HY (@1, i) = V(1) = (0= Dur(a1) + 03 Vi) (3.4)
=2
-2 Z In|z; — ],
2<i<j<n

H’r(za)(xla axn) = _n‘/l(xl) - nzu(xl)

tn(n— 1) [In |z — ylp(@)p(y)dady,

where
V(z) =V(z) - Vi(z),

u is defined in (1.9), and u; = u + V4. Denote by

i = (Z°) " exp{~H}}

the probability density defined by one of these functions (cf. (1.17)).
We will use the Bogolyubov inequality, valid for any two Hamiltonians H; »
with correspondent normalization constants (partition functions) Z »

(Hy — Hi)p, <logZ; —log Z> < (H> — Hi)Hn,, (3.5)

where the symbol (...)y denotes the mathematical expectation with respect to
the probability density p = Z~' exp{—H}.

Using the r.h.s inequality in (3.5) for H; = HY and H, = H,(J‘”, we get

log Z(M) — log Zﬁll“) <

n

20 1) [ logler  m2l(p0) (a1, 2) = oD )l D ) dmdes (5

+2(n - 1) / log |11 — 2o (1) (00 (2) — pliea))dirydica,

where p%l’l)(acl), and p%l’z) (z2) are the first marginal densities corresponding to

z1 and z9 for the Hamiltonian HT(Ll) (note that p%l’l)(acl) # p%m) (1) since HT(Ll)

is not symmetric in z; and z2), p%l’l)(ml,mg) is the second marginal density,

corresponding to 1,2 (note that p%l’l) (21, 22) is not symmetric because of the
same reason). Lemma 4 of [8] (valid for not necessarily symmetric Hamiltonians)
implies that the first term in the r.h.s. of (3.6) is O(logn). To estimate the second
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term we first take into account that the integral kernel log |z — y|~! is positive
definite, hence by the corresponding Schwartz inequality

\/logm Il (@) (o) (y) (y))dxdy‘

1/2
<| [ogle = sl ) ) oy 57)
1/2
log|z —y|(p} ) (x) — p(2)) (p*) (y) — p(y))dudy
By using the estimate
T
0+ ) - A
= (Zr(ll))*l/dxz dzy| exp{— nV(a:+ nZV (x; + 3/7 )}
(3.8
—exp{—nV(z —nZVacl ‘ H|$—zz| H |z; — 2,
=2 2<i<j
const
S —pgzlﬂl)(x)a
n

valid for || < 1 in view of the condition (1.3), and the fact, that [ p(1 ) (x)dz =

1, we obtain that p(1 1)( ) < const n®/7. Hence we have the following bound for
the first factor in the r.h.s. of (3.7):

|/1n|z—y|p11)( )Y (y)dady| < const logn.

To estimate the second factor in the r.h.s. of (3.7) we use the L.h.s inequality in

(3.5) for the Hamiltonians Hy = HT(LG) and Hy = Hy(ll), where HT(LG) and Hr(Ll) are
defined in (3.4). We obtain the inequality

_W/logkv yl(plD (@, y) — P2 (2) P (y)) dady
_W/logm yl(p2) (z) — p(2)) (p2) (y) — p(y))dady
+w / logla — yl(p? (@) — p(x))ply)dady+
log 2 — ylo{) (2)p(y)dudy (39)
_W/logkv ylp“)(zay)dxdy

1 )= 2 [ Vi@ (o)ds

( log Z, ——logZ(l)) <O(logn

n

In the r.h.s. here we have used the result of [8] to estimate 1/n”log zZ{ -
1/n”log Z, and inequality (3.5) to estimate 1/n”log Z, — 1/n” log z", Using
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Lemma 4 of [8] (more precisely, repeating almost literally the arguments of that
lemma in the case of the non symmetric Hamiltonian ), we obtain that the first
and the last terms in the Lh.s. of (3.9) are of the order O(logn/n). And the third,
the forth and the fifth terms here are evidently of the order O(n~!). Therefore
finally we get from (3.9)

logn
—/loglx = yl(pn? (@) = p(@)) (o> (y) = p(y))dady < const ——. (3.10)
Substituting this estimate in (3.6) we obtain
log Z\M) —log Z{*) < const v/nlogn. (3.11)

Now we use the r.h.s inequality in (3.5) for Hy = Hr(lla) and Hy = H,,, where
H' and H, are defined in (3.4) We get

log zite) logZ, <n [V (a:l)p,(fl)(ml)dml

+(n = 1) [ p (@) (0% () = ply))da1dy,
where p,(fl) and pﬁ{ﬂ) are the first marginal densities of the Hamiltonian H,(lla),
corresponding to z; and z5. On the other hand it is easy to see that

) — 0 = s (@) = V(a))

" [exp{(n — Duy(z) — V(z)}dz’
and due to the choice of the function V; the density p%al) () decays exponentially
outside of o. Thus since V;(x) = 0 for = € o the first term in the r.h.s. of (3.12) is
of the order O(1). The second term can be estimated by the Schwartz inequality
similarly to (3.7) and then, using the fact that p,({ﬂ) (z) coincides with the first
marginal densities of the Hamiltonian

(3.12)

H;,L(Z'Q, ey Tp) = nZV(w,) -2 Z In|z; — z;|.
i=2

2<i<

Therefore the analog of inequality (3.10) for p%‘ﬂ) (x) follows directly from the

results of [8]. Thus, from (3.12) we derive
log Z{!® —log Z,, < const+/nlogn. (3.13)
Bounds (3.11) and (3.13) lead to the relation
A
/envl(zl)Pn(wl)dwl = ZLn < eCavmlosm,
Taking Cy = 22—?, we obtain from the last relation that for any positive ¢ satis-

fying the inequality: Con~'/2logn < e < g¢ we have

/ pn(z1)dzy < exp{Csyv/nlogn — Cien} < e~"C1¢/2,
R\o.
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To obtain this statement for py, ,, we have to prove now, that for any n-independent
€ we can choose €1 such that for |k — n| < e1n the spectrum of the ensemble

with potential V = EV is inside of o, 5. This fact follows from the main result

of [8,12] and also from [19]. Proposition 2 is proven.

Proof of Lemma 1. Using Proposition 1 we rewrite equation (2.27) in D:

PEXERE) = 3= [ 4@ 0RO, (314

with Q(z, () defined by (1.16). It follows from formula (1.15) for P(z) that the
function ¥(z) of (2.28) solves the equation (3.14) in the class (2.29). Let us
show, that the solution is unique. Denoting by Q(z) the r.h.s. of (3.14), we see
that Q(z) is an analytic function in D. From equation (3.14) we derive that
zeros of P(z) in D coincide with zeros Q(z) and have the same order. Thus,

Q)
P(z)
because we are looking for a solution analytic outside o.. Thus R(2)X (z) is

function R(z)X(z) =

is analytic in D. In the rest of C it is analytic,

1
analytic in the whole C. Besides, if R(z) = ;(1 +0(1)), as |z| = oo, then in the

case (i) R(z)X (z) is bounded, as |z| — oc. Therefore by the Liouville theorem,
R(2)X (z) is a constant. In the case (ii) we get also from the Liouville theorem,
that R(z)X(2) = az + b. By the symmetry of the function R(z) we get R(z) =
2X~!(z). This proves the first statement of the lemma.

To prove the second statement, we notice that under condition (2.30) in the
case (i) we have R(z)X(z) — 0, as |z| — oo. Thus, according to the above
conclusions R(z) = 0 for all z. In the case (ii) condition (2.30) implies that
R(2)X(z) = const and we get R(z)X(z) =0 from the symmetry condition.

To prove that (2.32) is a solution of equation (2.31) we note first that for
any closed contour L that does not contain the zeros of P(z) we can write the
relation

L1 [ROXOK 1 [ QQd
R(Z)X(Z)‘M/L C—2) 2m'/LP(<>(c—z>’ (3.15)

where ((z) is defined as in the r.h.s. of (3.14). Indeed, under condition of the
lemma R(2)X (z) = z71(1 + o(1)), as z — oo, i.e. the function is analytic out-
side of contour L. Then, by the Cauchy theorem, the first term in the r.h.s. is
R(2)X(z). The second term is zero, because the integrand is analytic inside the
contour L and z is outside of L. By using this relation, we can rewrite formula
(2.32) for the solution as

1 !
o, (07 d
—PO)X(Q)R(C)— 5~ /L V(¢ G)R(G)dG + F(g)) Wg—z) -0,

where the contour L; lies outside of L and is close enough to L. According to
the condition of the lemma the expression in the brackets is analytic outside of
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L. Thus, by the Cauchy theorem, we have

(V!(2) - P(:)X(2))R(z) — = / V(z OR(Q)C + F =0

271

Since 2g(z) = V' — P(2) X (z), the last relation proves that (2.32) is the solution
of equation (2.31).

Uniqueness follows from the absence of solutions of the homogeneous equation
(2.27) in the class (2.30). This fact was proven above.

Proof of Lemma 2 Consider the ”block” symmetric Jacobi matrix JMN) which
can be obtained from J if we set J,_n,—1 = 0. Let R(”’Nl)(z) be its resolvent.
We will use the resolvent identity valid for any two selfadjoint operators .J; »
with resolvents R o respectively

Rl (Z) — RQ(Z) = Rl(z)(Jz — Jl)Rz(Z) (316)
Thus taking as R;(z) the resolvent R(z) of J(n), and as Ry(z) the resolvent
RN (2) of J(™MN) we obtain

Rij(2) = Ry (2) = BV Tn i 1R i (2)

+R(7" N1)

(3.17)
kot Ny 10+ N 41 R Ny 12,5(2)-

Now we use the general fact of the theory of the Jacobi matrices

Proposition 3. Let J be the Jacobi matriz with coefficients Jy 11 = Jrpt+1,6 =
ar € R, |Jii| <e, and |ag| < A. Then there ezist positive constants C1 o, such
that for any z € C\ [-24 — €,2A + ¢] the matriz elements of the resolvent
G = (21 — J)7! satisfy the inequalities:

Cl s ()b’
G ()] < grzer I, (3.18)

where . (z) = dist{z,[-24 — ,2A + £]}.

The proof of the proposition is very similar o that of the well-known Combes-
Thomas estimates for the Schroedinger operator and we omit the proof.

On the basis of the proposition we obtain the bound

n,N1) 1 —Cy 2)|j—
BN () < g ye o, (3.19)

Thus, for (N} — 2N) < |k —n| < (N; — N) we have

n,Ny n,N1 1 B AR
|R’f’l %1) lk( )| |Rn+]]\\’]1+1 k( )| S me C2d:( )N

So, it follows from (3.17) that

_ _ pln.N1) < const  _ 5 ()N 9
[Rij(2) — R (z)|_7|%2|66(2)e . (3.20)
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Similarly, if we consider the (2N} + 1)-periodic symmetric Jacobi matrix .J such
that

Jik+1 = Jrpsr |k —n| < Ny, (3.21)
and denote by R its resolvent, then
2 ~
R — BN (2)] < e G0N, 3.22
| Rk (2)] < 520.00)° (3.22)
Therefore,
~ const N
R -R < e RO (IN 3.23
R (2) — Rik(2)] < 5200, (3.23)

Applying the resolvent identity (3.16) to the matrices J®) and J we obtain in
view of estimate (1.28):

Ry i(2) — B (z,n 1Y) < 2610 (3.24)
k,j k,j 9 = np|§2:|2’ .

where R,(f;(z, 5) is the resolvent of the Jacobi matrix J®) (2, s) defined in (2.48)

and /) is defined in (1.30). Now expanding R( )( 1) with respect to n~ ! it
is easy to find that

( C, NP-‘rl

(@) < 751’“( o (3.25)

|Rk:](z n 1) -

From (3.23)-(3.25) we derive that

sﬁf’) CleJrl e—Ca2d:(2)N

(e = G2 (2)nrtt  [32]0:(2)

Ri(2) = SR < 5

This inequality and (2.11), lead to the first inequality in (2.51).
To prove the second inequality in (2.51) we use again identity (3.17). Taking
the second power of the identity, using the bounds
1
REE

IR ()], (R (2)] <

valid for resolvents of arbitrary selfadjoint operators, and bound (3.19), we obtain

> (Ris(2)? = SR () <
.. = L 2
me Cabe( )N<;|RnN1’j(Z)| +;|Rn+N1,j(Z)) |> (3.26)

6—0255(2)N

< °
~ [S2[20:(2)

To estimate here the sums of the type Z;‘;l |Rn—ni,j(2)|* we have used the
simple inequalities

— _ 1
Z Rn— le] ZRn Nh] Rijn—n, (z) < (R(z)'R(z))n*Nhn*]\H < W
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Similarly,
o0 B o0 . 1 ~
Rim(2))? — RMNI ()2 <o~ _o~Cade(:)N (397
‘m:zk;rl( ; ( )) m:zk:Jrl( hm ( )) - |§Z|265(Z) ( )

And then, by the same way as in (3.23)-(3.25) we get the second inequality of
(2.51).

The proof of (2.52) is similar.

Note that in fact we have proved (2.51) and (2.52) for |k —n| < (N; — N).

To prove (2.53) we need to make one more step. Let us prove that for |k—n| <
(N1 — 2N)

nf(leN

Z*)[ ZR% H We-me(z)ﬁ/z (3.28)

j=1

To this end we consider one more ”block” symmetric Jacobi matrix J(n(N1—=2K))

which can be obtained from J if we put J, —(Mi—28)—1,n— (N1 —2) = = 0. Using

identity (3.16) for J and J((M—2N) and (3.19) for J(™(V1-2M) we obtain
similarly to (3.26)

N) oo
Z S Rym(2)? - Z Z RN ()2 <
= m=k+1 = m=k+1 (329)
20 s ()N o Cade(x)N /2
REIK ~ [92]20:(2)

Then, using the estimate (3.19) for R;%quﬁ))(z) with j <n — (N; — N) and
m>k+1>n— (N, —2N) we get

Z Z O

2 2 2(2) 82()
This inequality combined with (3.29) proves that
n—(Nl—N)
> [(R Ry Z (2| =
j=1
n—(Nl—N) 1
—Cob:(2)N /2
2 > Rl < EXEA
Jj=1 m=k+1

Now, using (2.11), we can replace (R * R); ;(2) by (=R} ;(z)) and R;m(z) by
R; m(2) to get (3.28). Applying the first and the second line of (2.51) for |k—n| <
(N1 — N) we get (2.53).
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Proof of Lemma 3. To find D,(f) we first compute the quantity
(BO(QTH RO nngr =
>0 O IR, i + R (O IR, 1 (0)

j=—oc0

o0 1 2 eiln=0(@=y=m) (1 4 g=ilz+v))
= Z — dzdy =
= 217 o (¢ —acosz)(( —acosz)

1 [ 1 — cos 2z <N 1 1
il —9(1- >y _—
27 Jo dx (¢ — a?cos?x) ( a? ) 27 Jo du (¢2 —a’cos’z) wa?

2 ¢ 1
=—(1-3)X .
2= )X

Then using the simple formula RS]’LH(C) =a! (CR%%(C) —)=a (X7~
1) we find from (2.65)

o= ' [vod %0 Cyxode= -2 [ YO g
DO = 5 [ VIOG + 20 - )X 0 = 55 [ 5= PO 20,

Here we have used representation (1.15) and the fact that [, d((X(¢)¢)™* = 0.

Similar calculations show us that A = 0, so it follows from equation (2.66)
that ¢ = 0 and we get (1.34).
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