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Abstract

We compute the asymptotic distribution of zeros and the weak limit of orthogonal polynomials on
the whole line whose weight contains a large parameter in the exponent. The techniques used and the
results are motivated by recent studies on the eigenvalue statistics of random matrices.

1 Introduction and Main Results

The study of asymptotic properties of orthogonal polynomials is a branch of analysis which goes back
to classics, has numerous links with various areas of mathematics and related fields, and which is still
actively developing, especially for the case of polynomials that are orthogonal on the whole real axis (see
e.g. the books [1-6] and references therein).

One newer useful link is with the theory of random matrices where orthogonal polynomials provide a
powerful tool for the study of the eigenvalue statistics of random Hermitian matrices whose probability

distribution has the form
po(M)dM = Z; ' exp{—nTrV (M)}dM (1.1)

where M is a n X n Hermitian matrix,

dM = [[ dMj; [] dSM;rdRM;y,
J=1 J<k

is the ”Lebesgue” measure for Hermitian matrices, the symbols Rz and Sz denote the real and imaginary
parts of z, Z, is the normalization factor and V' (}) is a real valued function (see the Theorems below for
explicit conditions and [7] for the physical motivation of (1.1)).

We denote by py, (A1, ..., Ay) the joint eigenvalue probability density, which we assume to be symmetric
without loss of generality. From random matrix theory [8] it is known that

pn()‘la )‘n) = Q;l H ()‘j - >‘k)2 exp{_nzn: V(AJ)} (1'2)

1<j<k<n j=1



where @), is the respective normalization factor. Let

P (AL ey M) = /pn(Al,...,Ak,)\k+1,...)\n)d>\k+1...d>\n (1.3)

be the k-th marginal distribution density of (1.2). The link with orthogonal polynomials is provided by
the formula (see [8])
(n—k)!

P O ) = S5 det (0, 291 (1.4)

where

n
Fa ) = 39 ™ () (1.5)
1=0
is the reproducing kernel for the orthonormalized system
" () = exp{-nV(X)/2}P")(A). 1 =0,1,.. (1.6)

and Pl(n)()\),l =0, 1,... are orthogonal polynomials on R associated with the weight

wy(A) = eV, (1.7)
B / P () PS (Nwn (N)dA = . (1.8)

Our goal is to study asymptotic properties of the polynomials Pr(ln)(A) and related quantities.

Let us notice, that the weight (1.7) has an unusual form from the point of view of the traditional
theory of orthogonal polynomials associated with weights on the whole R. Indeed, in that theory the
study of asymptotic properties of the orthogonal polynomial P, for n — oo is carried out for a weight of
the form

w(z) = e~ 9@ (1.9)

that does not contain the large parameter n.! In this case most nontrivial asymptotic properties of P, (z)
manifest themselves for z = O(ay,) where a, — oo as n — oo (a, are known as the Mhaskar-Rakhmanov-
Saff numbers, e.g. a, = const\/n for the Hermite polynomials corresponding to Q(z) = z2). Therefore
the parts of Q(z) in (1.9) that contribute to the asymptotic behaviour of P, (z) are the "tails” of Q(z) and
that is why one needs to impose certain regularity conditions on the tails behaviour, requiring roughly
their power law form (see e.g. [2]). In our case of (1.7) it suffices to consider A = O(1) as n — oo and no
conditions on the tails V' (\) are needed in order to study the asymptotic properties of Pé"). Therefore
the mathematical mechanisms which determine the asymptotic properties of the orthogonal polynomials
associated with (1.7) and (1.9) are different, especially for ”strictly” nonpower law (e.g. nonconcave) V’s.

There is however a class of weights that belongs to both cases and for which we can reduce (1.7) to
(1.9) and vice versa. This class consists of monomial weights

Q(z) = |z|%, V(A =N, a>0 (1.10)

. In this case the rescaling
nt/ox =z (1.11)

transforms (1.9) in (1.7) and gives the simple correspondence

])l(")()\) — P[(}\nl/a)nlﬂa

See, however, the book [5], devoted to polynomial approximations with weights of the form (1.7)



between the orthogonal polynomials associated with the weights (1.9) and (1.7).

We shall now return back to the discussion of random matrices, in particular, to formula (1.4).

The simplest case of pg)(}\i) is already of considerable interest. Indeed, if )\gn), ey )\%n) are eigenvalues

of a random Hermitian matrix M, then N,, defined by
_1y (n) _
Nn(A) - EZXA(A] )7 A= (aab)a agba (112)
j=1

is their normalized counting function (empirical eigenvalue distribution), and

BINLA)} = [ A Nax= [ paax (1.13)

where according to (1.4) and (1.5)

n—1

o) = ~ha(00) =+ T B OO (1.14)

§=0

Here and below the function xa(A) is the indicator of the interval A and the symbol E{...} denotes the
expectation with respect to the probability measure (1.1).

The function
AN = TEa (XA

is known in the theory of orthogonal polynomials as the Christoffel function.
In the recent paper [9] it was proved that if V' (A) is bounded from below for all A € R and satisfies
the conditions
VOl > @+ e log AL, A > Ly (1.15)

for some Li, € > 0, and
V(A1) = V(A2)| £ C(La)|A1 — A2|?, [Ar2] < Lo (1.16)

for any 0 < Ly < oo and some v > 0, then:
(i) pn(A) converges to the limiting density p(A\) (called the density of states of the random matrix
ensemble (1.1)) in the Hilbert space defined by the energy norm

1/2
(= [ 108 1A= mloNpmyirdn) (1.17)
(ii) p(A) can be found either as the unique solution of the equation
suppp € {1 u(\) = max u(p)} (1.18)

where

u() =2 [ dpplu)log X ~ ul = V(. (1.19)

or as the density of the unique minimum of the functional (energy) defined on the set of all probability
measures v by the formula

Uv) = —/V(dA)u(du)) log |\ — 1| — /u(dA)V(A). (1.20)

Remark. Let us note that equation (1.18) after simple transformations gives us singular integral equation

2
/'[;\(%)Zu =V'(\) A € suppp



If we know the support of p,to find it we can use well-known inversial formulae of the singular integral
equations theory [11]. Unfortunately, information about the support of p cannot be obtained easily from
equations (1.18)- (1.20). We can say only that the number of intervals of the support is not more then
the number of extremal points of function V. To find the endpoints of these intervals we need as a rool
to solve the system of nonalgebraic equations.

Theorem 1 Let function V() satisfy condition (1.15), o be a support of the limiting distribution p(\)
and one of the following conditions be fulfilled (i) o consists only of one interval (a,b) (ii) V(X) is an
even function and the support o consists of two intervals o = (a,b) U (—b,—a). We assume also that
function V(X) has an analytical continuation into some open domain D C C (o C D) and p(\) can be
represented in the form

c(MV (b —=A)(A —a), in the case (i
o) = POVX(), x(y = VTR fhe case (7 (1.21)

Xo(A)V (A2 —a?)(b2 — \2), in the case (i),

where x5(\) is the indicator of o and the function P(\) is some function, which has no zeros in @.

Then, for any natural namber m, taking My = o(nl/m) and My >> log®n, one can find coefficients
J,E?,g_i_l, ves JIE,TZ)H (n—M; <k <n+M ) and functions ¢ (2), ..., g™ (z) such that for for any n— M, <
k S n + M1

m .
" Jg k41 — Zn_jJ,g{,Z_i_ﬁ <epn, (en—0, n—o0). (1.22)
j=0
and .
n™|gn(z) = > ng¥(z)] -0, (n— o) (1.23)
7=0

uniformly in any set {z : 0(z) > d}. Here we denote 6(z) the distance from the point z to the support o.
In particular,

99z =g(2), gW(z)=0 (1.24)
in the case (i)
0 1 _ a 2(k —n) 1 1 2b+a), 1 _ 1
Jk,k+1 4(b a’)’ Jk k+1 b—a [(P(b) + P(a)) + b—a (P(b) P(a))] (]‘25)
and in the case (ii)
0 0
J2(k32k+1 = ay, J2(k32k—1 =b (1.26)

(1) _2k—n-—1 a? _ b2 1 _ 2k—n a? _ b2
alJQk’Qk_l = (a2 — 62) (P(a) P(b)) 61J2k,2k—1 - (a2 _ 62) (P(a) P(b) )7

where 1 1 1
a1:§|a+b|, b1:§|a—b| or a1:§|a—b|, b1:§|a+b|.

2 Proof of the Main Result

Proof of Theorem 1
In addition to distribution (1.2) consider k-dimensional distributions with the densities of the form



k
PeaQAn M) = Zn [T Oy = Am)?exp{-nd_V(3)}, (2.1)
1<j<m<k j=1

where k assumes integer values and Zj ,, is a normalizing factor. Let

Pra) = [ dhadAeprn(,Ae)
(2.2)

Pra:de) = [ dAgdhepin(iisAe)

be the first and the second marginal densities of (2.1). Let us take any z with 3z # 0 and integrate by
parts the expression

VI(A)ﬁ ,n(>‘) _ 1 p ,n()‘) k-1 P ,n(>‘7:“)
/ﬁd)\ = 5/ (Z’“_ A)2dA+2 - / (Z_]“A)(A_M)d)\du. (2.3)

By using the simple identity, based on the symmetry pg ., (X, 1) = pg.n (1, A):

ﬁk,n(Anu) — _ M
Ry O e pem AL

we get from (2.3)

VOB L f B k=1 [ aOu)
/ Pk dA_E/(Z_A)Qd)\Jr - /(Z_’“A)(Z_M)d)\du. (2.4)

According to standard representation (see [8]), we get (cf. (1.4))

ﬁk,n(A) = f{k,n()‘a >‘)a ﬁk,n(Aa N) =

k -
T det || K (0t )] g, (25)

where

k
RinOAm) = k713 ™ g™ (1) (2.6)

=1

with wl(n)()\) defined by (1.6). Let us introduce the notations

k
n n k [
Kin(hpm) = n " 300 V9™ () = =KX ),
I=1 (2.7)
pk,n(A) = Kk,n(Aa >‘) = %ﬁk,n(k)

Then, using (2.5)-(2.7), we can rewrite equation (2.4) as

' _ 2
/W&:n_l/ (/;kiz(;\))Qd)\Jr/Pk,n(A)p(kZ,nEA;\)(z(f(Z;(A,,u)) . 23)

We use also the result [13], which implies, in particular, that, choosing any n-independent £ > 0 and
denoting by 0. C R the e-neigborhood of o, we have

[ pax <O, [ (ga(n)dA < e 0, (2.9)
R\O’s R\Us



with some positive C(e). Let us fix € smal enough, that 0. C D. Then (2.9) allows us to replace in (2.8)
integrals in the whole line by integrals over 0., Therefore, denoting
Pk n(>‘)d>‘

gen(2) = | = Raml2) = UEW’ R, LLW (2.10)

v(za C) = > I_(gé).a

<

we get from (2.8):

(9 (2 /szpkn dA——ZR’ ——ZRQ’] ) = en(2). (2.11)

m,j=1

Here and below we denote by e,(z) the sequence of functions (may be different in different formulae)
which are analytic everywhere in C \ o, and satisfy the estimates

Cle_" 2

en(z 2.12
o) < (212

where §(z) is the distanse from z to o., | is some positive integer number and C» are some positive
n-independent constants.

Let us note, that V(z,¢) in (2.10) is an analytic with respect to ¢ inside D, except the point ¢ = z.
So one can write

[ VGV oair= o [ ar [ acv 02D = [ e anatc) (2.13)

where L C D is an arbitrary closed contour, which contains o, and does not contain z. Then we can
rewrite (2.11) as

1 k
1P = 5 [ V(2000 = 5 30 B @ — LSy ryo-0 e
Comi ne =

m,j=1

Now, subtracting the (k — 1)th equation from the kth one we obtain:

2R k(D 10(2) = 5 [ VORI — Rus2) = = SR = enle): (219)
J

We consider (2.14) and (2.15) as a system of equations with respect to the functions g ,,(2), Rjm(2)
and R;C’k(z) and solve them by the methods of the perturbation theory.

It was proved in [10], that

k
R G- Z I < iy +len(a) (2.16)

Thus, it follows from (2.14) that for any & = n(1 + o(1)) there exists the limit

lim_gj.n(2) = 9(2), (2.17)

n—oo

where g(z) in D is the solution of the equation

9*(2) = V'(2)g(2) + Q(2) = 0, (2.18)



with
= [ QNN Q) =
Here p()) is the limiting density, which has the Stilties transform g¢(z).

Thus, zero order terms for functions gj ,(2) are equal to g(z).
We use also

(2.19)

Proposition 1 Under conditions of the theorem the Stilties transorm ¢(z) of the limiting density p for
z € D can be represented in the form

9(2) = 5(V'() + X(2)P(2)), (2.20)

with
(z—a)(z—0), in the case (i)
X(z2) = (2.21)
V(22 —a?)(22 = b?), in the case (ii)

where we take the branches of the square root, which are analytic everywhere except o and have the
asymptotic X(z) = 2P(1 + O(z™1)) with p = 1,2 for the one- and two- interval cases respectively. P(z)
in (2.20) is an analytic in D (including o) function, which can be represented in the form

()= 5 / Q= (0)de, (2.22)

where L is any closed contour, encircling o

The proof of Proposition 1 is given in the next section.

Remarks

1. Tt follows from representation (2.20), that P()), defined by (1.21) coincides with P(z) defined by
(2.22) for z =X € 0.

2. Starting from this moment we assume, that € is chosen small enough, that . does not contain zeros
of the function P(z).

To find the zero order term for Ry j(2), let us note that

k-1
IRk (2), 1D Ry (2)] < 2(2)
j=1

where §(z) is defined in (2.12). Therefore, the last two terms in the Lh.s. of (2.15) have the order n~!
and the zero order equations for R (z) have the form

20()un(2) = 5 [ AV (2 ORk(O) = il(2) + enl), (223)

where the remainder function

o) =~ Ry, z R 5(2) + 2Bi(2) g5 1.0(2) — (2))

is an analytic in C \ o function, which satisfies the bound

(0,R) ( )| const

< .
|7" ~ nd%(z)

(2.24)

-~



Besides, since by definition
Jozar =1,
we have from (2.9), that
1
Rii(z) ~ — +en(2), 2z — oc. (2.25)
z

The solution of (2.23) was already found in [12]. But since, as usually in the perturbation theory,
equations of such form appear at the each step of the expansion procedure, we use here a bit different
way to analyse the equation, which is based on the following lemma:

Lemma 1 Consider the equation

29(2)R(z) = % /L AV (2,O)R(C), z€D\o. (2.26)

with closed contour L, that contains o. and does not contain point z.

Under condition of the theorem equation (2.26) has in the case (i) only one solution R(z) = ¥(z)
in the class of functions which have an analitical continuation in C\ o. and behave like % as z — 00.
In the case (i) it has also only one solution R(z) = ¥(z), if we add an additional symmetry contition
R(—z) = —R(z). Here and below

X~Y2), in the case (i),
U(z) = (z ¢ o), (2.27)

2X~Y(z), in the case (i),

where X (z) is defined by (2.21). For the case (ii) equation (2.26) has the unique solution R(z) = ¥(z)
in the same class of functions, if we put the additional symmetry condition R(z) = —R(—2z).
In both cases equation (2.26) has no solutions in the class of functions R(z) analytic everywhere except
o and satisfying conditions
lim |2?R(2)| < const < oo. (2.28)

|z| =00

. For any analytic C\ o, function F(z), satisfying condition (2.28), the equation

29(R() = 5 [ AV OREQ) - F (2 (2.29)
has a unique solution of the form
_ X '(2) F(¢)
R(z) = = /L St (2.30)

where P(z) is defined by (2.22) and a closed contour L should be taken close enough to o, so that z and
all zeros of P(z) are outside of L.

On the basis of this lemma, we obtain

(0,R)

Ry p(2) = W(z) + 75,7 (2) + en(2), (2.31)
where f,(c[’];ZR) (z) is obtained by formula (2.30) with F(z) = r,(c(’];lR)(z) and therefore admits the bound
_(0,R) const (0,R) const
r 2)| < max T < . 2.32
| k,n ( )| — 52(z) (¢:6(0)=6(2)/2) | k,n (C)| — n54(z) ( )



Thus,
R\ = lim Ryx(2) = U(2). (2.33)

’

Then, as it was shown in [12], for any &k = n(1 + o(1))
: — 700
dim g k1 = Jp g

where in the case (i) J( is the symmetric Jacoby matrix with constant coefficients (1.25), and in the
case (ii) it is the symmetric two-periodic Jacobi matrix with the coefficients (1.26). Thus, we obtain zero
approximation for the coefficients Ji, ;1 for k = n(1 + o(1)).

To get the first order terms for these coefficients, let us study the first order terms of equations (2.14).
By the virtue of (2.16) we conclude that the first order equation for the function

9 (2) = nlgrn(2) — 9(2)) (2.34)
has the form .
29(2)9(n(2) = 5. [ V(2 QglnQd = i) + ene), (2:35)
with i
1, _ 1 1, const
o (2) = (941} Z[ R = X (R 106 < 505
and the normalization condition
G (2) ~ (k—n)z"" + en(2), (2.36)

which follows from definition (2.10) of the function gj ,(z). According to Lemma 1, we get then
1 (1,
G (2) = (k= m) (=) + 747 (2) + en(2).

(L,

where the remainder function 7 )(z) admits the bound

N const
P (2) < 5

(Lg)
ma Ty 2.37
20) (o y e (©) (2:37)

In other words

gt (2) = lim g\ 4(2)) = (k= n)¥(2). (2.38)

Now we need the lemma, which after p steps of our expansion process allows us to replace in
(2.14),(2.15) Ry ;(#) by some expression from the coefficients J,gl)f_i_l (I =0,...p) found at the previous
steps and to estimate the error of this replacement.

Lemma 2 Let us take M = [log’>n] and My >> M. Assume that for any n — My < k < n + M; we
have found the coefficients ng?/2+1a---w715f)/3+1 such that (1.22) is fulfilled for m = p. Consider J®)(s)-
(2M; + 1)-periodic symmetric Jacobi matriz such that

p .
JO =8I0 (k=n— My,.n+ M) (2.39)
=1

and let RW)(z,s) be a resolvent of J®)(s). Denote

p
RU(z) = 18‘9— ®)(2,8)|sm0, SP(2) = n IRV, (2.40)
] .



Then there exist some positive n-independent constants C1 and Cy such that for any n— My +2M < k <
n+ My —2M for any z & o,

(») en +n710; e C20(:)M
Ria(z) = SEU | = Riae) = (59 SP)a()] < bt S,

k k ~1 —5(z2)M
en +nC e
|3 Brm(2)) = 32 (S’ < G * 507
L k 1k » (2.41)
=R ()15 = 20 Bim(2)*] =~ 3TI(SW) - 59)5(2) = 37 (S (2)°]] <
j=1 m=1 7j=1 m=1
Mgy, +n71Cy) e 0@M
oP+1(z)np 3(z) 7
where §(z) is ddefined in (2.12).
Consider the function ) .
R (2) = n(Ri(2) = Rij(2)),
with Ry (z) defined in (2.33). ;From (2.15) we get
2R () = 5 [ AV OREQ) - FP @) - 5P @) + elo), (2.42)
where o
F(2) = 2R ()01 (2) + (RO RO)er(2) = 2 3 (R () =
j=1
2R ()51 (2) + (RA(2)” = 20k —n) + DT (2)°,
and
1 -
() = LR () + SR (@0, (2) + R u(e) — (RO - RO)eu(2)]-
k—1
Y (g ) - ()
7=1 7j=1
By the vertue of Lemma 2, r,(clnR)( ) — 0, as n — oo. Then, on the basis of Lemma 1, we get for the case
(i)
(1) B 2(k—n)+1 1 _ 1 _(1,R)
B = X000 -a) POGE -0 Pla)e—a) T ) (2.43)
and for the case (ii)
M, 2(k-n)+1 a? B b* _(LR) 9 44
Bi?) = X0 P @) PO)E ) ke ) (2.44)
where for both cases f,(;;lR)(z) admits the bound
1 R) const 1 R)
z)| < max 2.45
Now, since evidently
1
Thgr + Jhge1 = /AQT/)%(A)CD\ = TM/LCQRk,k(C)dCa (2.46)

10



we can get in the first order with respect to n~!

0 1 0 1 1 1 Jn
AT+ 0 ) = 2 [ R )

)

where we denote

r{I) /g“? OdE =0, (n— o).
In particular, for the case (i) we get
b—a 0 LSO\ gm_ @ -1 1 1 atb 1 ()
1 (Jepr1tdhp1) = RE—n)+ 1)1, I'V = 2(P(a) +P(b)) - a(P(b) B ))]+ . (2.47)

and for the case (ii)

1 a? b2 (Jn)

o 77 P +rM (248)

12k T leQ(,IC)JrLQk = (2(2k —n) + 1)](2'2')’ (i)

with a; and b; defined in (1.26).
Solving this equations, starting from £ = n, and expressing the next coefficient through J,, 11, is
easy to obtain that both of this system have one-parameter families of solutions

(i) arJy) g = 2k — 1 —n) 10 4 e+ 75", (249)

where

Fm) _ o) Z;?:l(_l)j,ﬂ;ﬂ)’ (k>mn)

i = B SR (I, (k< ).

n—j?

To choose the value of the parameter ¢ we use well known in the random matrix theory equation (see [8])

k
Jk,k+1/V’(A)T/)k(k)z/)kﬂ()\)d)\ =
We shall use it in the form
J, k _
SEEL [V Rip(QdC = -+ 0. (2.50)
i Jr n
The first order equation, which follows from (2.50) has the form
J1£012+1 (1) kk+1
) / 5
%iﬁvmm,<dm—%z/v ()¢ =k —n

Substituting here the solutions (2.49), we get in the case (i) a linear equation with respect to ¢ of the
form

DWe+ AV = (k —n) (2.51)
with
(’LMM/V' O+ 5 [ VIQEOQIERO Qe
(2.52)
k =J; k+1/ V'(¢ (Q)d¢ + Jy, k+1/ V'(O)(RO) - 70O RO(CO)) g gy de,

11



where J7T is the symmetric Jacoby matrix with coefficient J,;t_i_l’k = (=1)" %=1 and J1.9) ig the symmetric
Jacoby matrix with coefficients defined by (2.49).

In the case (ii) we get the pair of linearly depending (see Proposition 2 below) equations with respect
to ¢

ngz) 1,26C T Agk) 1ok = 2k =1 —n), (2.53)
Délklzd 2kC T Aékzrl or = (2k —n)

where

Dl on = T o 1 VRGO + T g fy V(ORI RO 2112
DY = I ok o VIORS) o (OdC + T oy [ VIO (RO TERO(C))ak 41 20
G o = T ok S VRGO 4 T fy VRO # T 4 ROt 11,

Agﬁﬂ 2% = J2(11c4(:1 o J. V' (C )Ré?c)ﬂ,%(odg + J2(12)+1,2k JL V’(C)(R(O)(C) x J0) 4 R(O)(C))Qkﬂ,?dea
(2.54)
with J2k 12k = @1 ot J;ZH op = by " and J(0) defined by (2.49) for the case (ii).
One can see easﬂy, that to have the unique parameter c¢- solution of (2.51) or (2.53) it is sufficient
in the case (i) to prove that D) # 0, and in the case (ii) to prove that at least one of values Dék) 1.2k

Déﬁrl ok 18 monzero.

Proposition 2 Under conditions of the theorem D) # 0, ( 2k 1 2k)2 + (D%L,%V # 0 and equations
(2.53) are linearly depending and have the unique solution ¢ = 0.

The proof of Proposition 2 is given in the next section.
Thus, on the basis of this proposition we find the first order terms of our expansion.

Now we shall prove (1.23) and (1.22) by induction. Assume that we have found coefficients .J ,g?,g e d l(f ,2 41

and functions g,(co) (2), ...,g,(f)(z) such that for any n — M; < k < n+ M; (1.22) is fulfilled with m = p

and any d > 0

max _nP|gpn(z) = S 07 (2)| < enld), (en(d) =0, as n— oo). (2.55)
z:0(z)<d

Let matrices RY)(z) (j =0,...,p) be defined as in Lemma 2 (see formulae (2.39), (2.40)).
Then, denoting

1
gD (2) = 0Pt (g2 Zn gy

we get from (2.14) the equation of the form

2029 (2) = 5 [ V(= el V(e — FO7 () = () + en2) (2.56)
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with

p k oo p—1
Pl 11 ! -1 !
@) =Yg @ed () + X X YRV @R ()
=1 m=1 j=k+1 1=0
P P .
rl(c,;szrl)(z) — P l(gl(f;rl)(z))Q + Qn—lgl(cl”;rl)(z) Zn_(l_l)gl(cl) 2) + Z ppH1-1-1 g](cl) (z)gl(cl )(z)—l—
=1 LU=11+'>p+1
1k k 1k k )
YR — Y Ry - - LS - 591500 — 3 (UL
j=1 m=1 J=1 m=1
(2.57)
where S(gl(z) is defined by (2.40). On the basis of (2.55), (1.22) and Lemma 2, we conclude that
r,(fil’g)(z) -0, as n— oo,
uniformly in {z : §(z) > d}, for any fixed d > 0. Then, on the basis of Lemma 1, we conclude
1 _(p+1,
ain (2 =9 () + 7 (2), (2:58)
with
p+1,g
p+1 /
L = omi P)(¢ —
and ¢
~(p+1,9) cons (p+1,g)
T z)| < max T .
en < (2) {¢:8(0)=(=)/2) €
Now, denoting
p )
R () = 0P (Reg(2) = Yo REL(2)),
j=0
we get from (2.15) the equation of the form
n 1 >
29 RE () = 5 [V ORED ©Qdc = FE @) = P0G () (259)
with
(1) z (410 () g0 k = L0 ()
Y =Yg Ri(2)+ Qo — D2 )Y Ry (2R, (2),
1=0 j=1 j=k+1 1=0
P P
LR - 1 - (1 4
i @) = R o gL @)+ Y et @R () +
=1 LU=11+U>p+1
k k
W MR G =2 3 (Ben2)*] = (S 89)5() =2 3 (ST,
m=1
By the vertue of (2.55), (1.22) and Lemma 2, we conclude that
r,ng:l’R)(z) — 0, as n — oo,
uniformly in {z : §(z) > d}, for any fixed d > 0. Using again Lemma 1, we get
1n 1 LR
B () = BRI () + 70 (), (2.60)

13



with
P-I—l R

R](“’k (2) 27T’L/P C

~(p+1,R) < const (p+1,R)
L PR i AT QI

Then, from equaton (2.46) we get in the case (i)

and

a(JEN 4 ) = ol el e g, (2.61)

where

(p+1) 2p
= o [ RO

and in the case (ii)
a1 I+ o Iy = @l D PP g, (2.62)
(p+1) .

Solving this equations, starting from k = n, and expressing the next coefficient through J -1 18 €asy to
obtain, that both of this system have one-parameter families of solutions

() T = b —e(=1yEn 4 i

(44) alJéﬁB% b(p+1)+ + ék ") (2.63)

leQ(k)Jrl or) = b(p+1) c+ fl(cJ’n)’

where

P = oY 4k (1l m Y = 7 sk (—0)ie T (k> )

P = oY 4 ok (il m Y = F sk~ (k< ).

To choose the value of this parameter we use like for p = 1 the analogue of equation (2.50), which due to
Proposition 2 gives us the unique value of parametr ¢. Thus, we have finished the proof of Theorem 1.

3 Auxiliary results

Proof of Proposition 1

It follows from equation (2.18) that in D g¢(z) could be written in the form (2.20) with P(z) being an
analytical function in D, except 0. Thus P(z) is also analytical in D, except 0. But for A € o, according
the theory of singular integration equation (see [11]), we have

/QAM ),

—

l\.')l»—t

where X () is defined by (1.21).
On the other hand, since g(z) is the Stilties transform of p(\)

p() = =L Tim Sg(A+ie) = X (A)P(V)

1
i £e—+0 2

Thus, for A € o
PO = [ QX (.

14



Then, according to the uniqueness theorem, the integral in the r.h.s. of formula (2.22) coincides with
function P(z). Thus, it is analytical in the whole D.

Proof of Lemma 1
Using Proposition 1, one can rewrite equation (2.26) in D as follows

PEXERE) = 5= [ dQORE) (3.1)

211

with Q(z,¢) defined by (2.19). Then, denoting Q(z) the r.h.s. of (3.1), we get that Q(z) is an analytic
function in D. ;From equation (3.1) we derive that zeros of P(z) in D coincides with zeros Q(z) and have
Q(2)
P(z)
because we are looking for the solutions of such a type. Thus it is analytical in the whole C. Besides, if

the same order. Thus, function R(z)X(z) =

is analytical in D. But in the rest of C it is analytical,

1
R(z) ~ —, as |z| = oo, then in the case (i) we get that R(z)X (z) is bounded, as |z| — oo. Therefore due
z

to the generalized Liouville theorem [11], R(z)X (z) is a constant. In the case (ii) we get also from the
generalized Liouville theorem, that R(z)X(z) = az + b. Then, using the symmetry of the function R(z),
we get R(z) = zX !(z). Similarly, under condition (2.28), we get that in the case (i) R(z)X(z) — 0,
as |z| — oo and thus D(z) = 0. In the case (ii) R(z)X(z) = const and we get R(z)X(z) = 0 from the
symmetry condition.

To prove that (2.30) is indeed solution of equation (2.29) substitute it in the r.h.s. of (2.29). We take
the closed contour L which is outside L1 and write

30t J, A OB = /dCQzC © f 46 c Cl)_
1 (2 C F(¢1)
@ni /L Cl/ X0 PG "
1 2, ¢ (Cl) 1 Lo

(2mi)2 /L1 a1 / de P(G1) (C G oz- Cl) a (3.2)

Vi) =V'(¢Q)  F(&)

P(z) X (2)R( /L Cl/ “CXOEG -0 PG -2 ~

1 V'(¢1) — V( ) F(G)

P(2)X(z)R(z) + —(27” / Cl/ d¢ X(O) (¢ —¢) PC)(C—2)

P(2)X (2)R(z) + 5= ! Cl (El) = P(2)X(2)R(z) — F(2).
27i (C1 —2)
Here we have use representation (2.22) for the function P(z) and the fact that for {; € Ly (i.e. inside L)
dg¢ _

/L XOG -0 " .

Uniqueness follows from the absence of solutions of the homogeneous equation (2.26).

Proof of Lemma 2

Consider the ”blok” symmetric Jacoby matrix J(mM1) which can be obtained from .J if we put Jy— a1 p—n =
Insm+1in+mn+2 = 0. Let R("’Ml)(z) be its resolvent. We use the resolvent identity valid for any two
Jacobi matrices J(1?) with resolvents R(1:?)) respectively.

R (2) = R®)(2) = R (2)(J® — JD)RP)(2) (3.4)
Thus, taking R (z) = R(z)-the resolvent of .J, and R?(z) = R™M1)(z), we obtain
5 (’I’L,M1)

n,M n,M
Rk,j( ) R](m 1)( ) R](cn }\2[1 1JnfM171,nfM1RnfM1,j(z) +Rk,n+Ml+1Jn+M1+1,n+M1+2Rn+M1+2,j(z)-
(3.5)
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Due to the standard theory of the Jacobi matrices with bounded coefficients we get

n 1 —C20(2)|j—
|R M) () < e Cad(2)|j—k| (3.6)

Thus, for n — (M; — M) <k <n+ (M; — M) we have

M M ]‘ —C20(2
B LRI, ()] < e

So, it follows from (3.5) that

const oy 5(z)M

Rej(2) — R (2)) < 2 3.7
| k,J(Z) k.j (Z)| = |$z|5(z)6 ( )
Similarly, if we consider J the 2M; + 1-periodic symmetric Jacobi matrix such that
Jiki1 = Jegsr (B =n— My, ...,n+ M), (3.8)
and denote by R its resolvent, then
- ) 2
R — R(n,Ml) < 2 mC(M 3.9
Therefore,
~ const
R ~R < e M 3.10
Applying the resolvent identity to the matrices J®) and J, we get due to the estimate (1.22)
R, . () ~1 €n
|Ryj(2) — By j(z,n )| < SRR (3.11)
Now, expanding R,(C ,1( ~1) with respect to n ! it is easy to get that
RO (zn) — 8Pz <~ (3.12)
k.g\ k.j = gpFL(z)pptL :

;From (3.10)-(3.12) we derive that

-1 —CQ(S(Z)M
_g® iy < En T Cin :
Rk (2) = S i(2)] < @ e T SA)

Now, using (2.9) and the fact, that both functions Ry, ; and S,(f,z(z) are analiticalin C \ 0., we obtain the
first inequality in the first line of (2.41).

To prove the second inequality in this line, we use again (3.5). Taking the second power, using the
bounds

My) 1
B (2)], [ R (2)] < S’
and also (3.6), we get
 (n,
I3 (Rij(2)” = (R () <
) 7=l =t . (3.13)
e Z Rt () + D Ry j(2))°)) < ramrrye P OM.

10(2) |32[20(2)

=1
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Here to estimate the sums of the type Y ;[Rn_ar ;(2)[* we have used the simple inequalities

1
Z|Rn M1,J ZRH Mm J,n M1( ) < (R( )‘R(z))n—M1,n—M1 < |%z|2
Similarly,
0 o0
S Bem@)? = S (B2 <o omCai, (3.14)
m=k+1 m=k+1 |\SZ| 6(2)

And then, by the same way as in (3.10)-(3.12) we get the second inequality in the first line of (2.41).
The proof of the inequality on the second line of (2.41) is the same.
Let us remark here, that in fact we prove the first and the second lines of (2.41) for n — (M; — M) <
k S n —+ (M1 - M)

To prove the third line of (2.41) we need to make one more step. Let us prove that for n—(M; —2M) <
k S n —+ (M1 - 2M)

M R 1 C6(2) M2
_R . _ ; < = =0 ) )
| ]2:1 [—R;;(2) mz::1R m(2)] < |§Z|25(Z)€ (3.15)

To this end we consider one more ”blok” symmetric Jacobi matrix J(:(M1=2M)) which can be obtained

from J if we put J, (rr,oar) 1 2ar) = 0. Using identity (3.4) for J and J-(M1=2M)) and (3.6) for
J(M=2M) - get similarly to (3.13)

M
¥ Z T (R D)= Z Z ) ()2 <
m=k+1 m=k+1 (3.16)
20 _chs(z)M L os(z)my2
< 2 .
[SaP = I8

2
Then, using the estimate (3.6) for R( n, (M1~ 2M))(z) with j <n—(My—M)andm > k+1>n—(M;—2M)
we get

| Z Z ni(My=20)) (2 I _cho(e)m < LI LYY

|2
= m=k+1 |\SZ|
This inequality comblned with (3.16) proves that

n—(M;—M) —M)

1
| Z [(R R ]j Z R27 | = | Z Z R27 < |(\ |3e—C25(z)M/2‘

Jj=1 m=k+1 e

Now, using (2.9), we can substitute (R * R); ;(z) by (—R;J(z)) and Rj.m(z) by Rjm(z) to get (3.15).
Applying the the first and the second line of (2.41) for n — (M; — M) < k <n+ (M; — M) we get the
third line of (2.41).

Proof of Proposition 2
To find D let us find at first

(—=1)* (ROQO)TDRO s = 3 (Ré?}(@(—l)’“*mfz+R§£3-+1(<>< IR, =
j_—OO

2 NE—y=m)(1 4 ¢~ U+y))
Z / drdy* =
—acosz)(( —acosx)

1 [ 1—0032x 22 1 (27 1 1 2 ¢2
de———————=2(1— =)— d — =21 -2)X"Y0).
/0 m(CQ 2 ( a2)27r 0 :E(CZ—anost) t C( a2) ©

2T

—a?cos® 1)
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Then, using the simple formula R;C I)chl(C) —1§Rk k(() —1=a"%¢X"1(¢) — 1, we find

a [ V')
i . ¢

a 2
(—1)k~ nD() 1 / v’(g)(§ +=(1— C_)) L¢yde = d¢ = aP(0) # 0.

2mi a (

Here we have used representation (2.22).
Similar calculations show us that A,(;)
get (1.25).
In the case (ii) let us start from the explanation why are equations (2.53) and similar equations which
appears at the each step of the approximation process linearly dependent. To this end we come back to

the equations (2.50) and add the k-th equation to the (k + 1)-th one. We get
2k -1

n

= k — n, so it follows from equation (2.51) that ¢ = 0 and we

%/ V() (Tkp—1Rr—1,,(C) + T pr1Rit1,1(C))dC =
™ JI,

But since Jy x—1Rr—1,%(¢) + Jkpr1Rrt1,5(0) = CRe () — 1, we get

o [ VIO = 2

27 J,

(3.17)

But this equation can be derived from equation (2.15), if we take in it only the second order term with
respect to z72. So it is easy to understand, that if we solve equation (2.15) up to the (p + 1)-th order in

1. then we solve (3.17) up to the same order. Therefore the sum of equations (2.53) is the corollary of
equation (2.48) (or in the case of higher orders of equation (2.62)), which we have used in order to derive
(2.53).

To find DS?_L% and D%i—l,zk we again find first (RO (¢)JH RO)(¢))ogs1 2. Let us note, that

1 0 1 0

(R(O)(C)J(i)R(O)(C))2kﬂ:1,2k = (a—la—al — Ea—bl)R(U)(OQkil’Qk (3.18)

On the other hand,

¢ _ ¢
KO e = a(af +8)C + (aF - 472

RO(C)) ok =

2 2 2 2 2 2
(©) — const + Tl po) — const o S Tar— bt (3.19)
R™(¢))2k—1,2¢ = const + 2010 R™(())2k,2k = const + 2 X (0]
_ +b CQ _ a2 4 bQ
RO _ eonst 4 &= b — comst + Y
(€))2k+1,2k TG (€))2k,2k X0

where symbols const means that this term is independent of ¢ and so after integration with respect to
¢ gives us 0. Now, using formulae (3.18) and (3.19) we get

2 2 12
(RO(Q)THRO(C))ar 1.9k = const — C;;i;(obl al)?'(g“)Jr
2 2 12\(, 2 12 (3.20)
2(( +af — b1)(a7 — b7)
dXQOP
Then, using definition (2.54), we get
DG = 5 [ V') [— D)ok 18+ 01 (RO TE RO )t 1.0 =
CQ +af — b})(a} — b%)
5l / W% X / KV’ AXQOPF
V(¢ ) (¢2 4 ab)ab
i %G %/LCKV e - eE-»xQ
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Here we have used expressions for a1 and by given after formula (1.26). But it is easy to see that

LoV 1 V)

ami LX) 7 Py 7Y
Theref
erefore S8 [ (¢? + ab)ab 3.21
2%—1.2k = 2_m/L V(<) (a+b)2(¢? —a?)(¢2 - 2)X(¢) 20
Similarly
) / acv’ (¢* — ab)ab (3.22)
2H1,26 = "5 —B)2(C2 — a?) (2 - )X (() '

(i)

It is easy to see, that D2k_1 9, and Déki—l 95 Can be zeros at the same time if and only if

V'(C) _
271'2/ AT X0 ( 271'2/ d (C2-v)X() 0. (3:23)

But on the basis of representation (2.22) one can get easily, that

| Vi) Pl 1 Vi) PO
g RS ey cro e RS ooy o R

and since under conditions of the theorem P(a) # 0 and P(b) # 0, we proved so that DS:ZL% and

Délkll_l o5 Cannot be zeros at the same time.
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