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In many three-dimensional metals with inversion symmetry and a weak spin-orbit interaction, Dirac points
of the electron energy spectrum form band-contact lines in the Brillouin zones of these crystals, and electron
topological transitions of 3 1

2 kind are due to certain points on these lines. We theoretically study these transitions
in detail and point out that they can be detected with magnetic susceptibility which exhibits a giant diamagnetic
anomaly at the 3 1

2 -order transitions.
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I. INTRODUCTION

The Dirac points of electron energy spectra specify many
unusual properties of graphene [1,2], of topological insula-
tors [3–5], and of Weyl semimetals [6,7]. In this paper we call
attention to the fact that in the “usual” three-dimensional (3D)
metals the Dirac points can be located along band-contact
lines in the Brillouin zones of the metals, the energies of
the points can fill a whole interval in the energy axis [8],
and these Dirac points lead to specific electron topological
transitions in the 3D metals. At these transitions topology
of the Fermi surface (FS) in the metals changes, but this
change differs from the FS transformation at the well-known
topological transitions of 2 1

2 kind, which were first considered
by Lifshits [9]. At the topological transitions of 2 1

2 kind a new
void of the FS appears (disappears), or a neck on the FS forms
(disrupts). These transitions occur near critical points pc in the
Brillouin zone at which the electron energy ε has an extremum
or a saddle point in its dependence on the quasimomentum
p. The small vicinities of these points give a singular van
Hove contribution [10] δν(εF ) to the electron density of states
ν(εF ), δν ∝ (εF − εc)1/2, where εF is the Fermi energy of
the metal and εc = ε(pc) is the critical energy. In the �

potential the appropriate singular contribution has the form
δ�(εF ) ∝ (εF − εc)5/2, and by analogy with the second-order
phase transitions, the topological transitions were named the
2 1

2 -order transitions, although they are not due to a change in
any symmetry. The Lifshits topological transitions and their
manifestations in various physical phenomena were studied
theoretically and experimentally in many papers; see the
reviews [11,12], the recent papers [13,14], and references
therein. In this paper we show that the topological transitions
associated with the Dirac points are widespread in metals no
less than the 2 1

2 -order transitions of Lifshits. The transitions
discussed here occur at the points on the band-contact lines at
which the energy of two touching bands reaches its maximum
or minimum on these lines. These transitions are 3 1

2 kind
according to the classification of Ref. [9], and we explain how
these transitions can be detected in experiments.

II. BAND-CONTACT LINES

It is common knowledge that the contact of the electron
energy bands in a metal can occur at symmetry points and
along the symmetry axis of its Brillouin zone. Besides, as

was shown by Herring [15], there are lines of an accidental
contact between two bands in crystals. The term accidental
means that the degeneracy of the electron states is not caused
by their symmetry. Such band-contact lines along which the
spectrum of the two bands has the Dirac form are widespread
in metals with inversion symmetry and with a weak spin-orbit
interaction. This follows from one of Herring’s results [15]:
If there is a point of an intersection of two energy bands in
an axis of symmetry of the Brillouin zone, a band-contact
line perpendicular to the axis has to pass through this point.
An intersection of the bands at points in the axes frequently
occurs even in simple metals [16]. The literature data show that
the lines of the accidental contact exist, for example, in Be,
Mg, Zn, Cd, Al, graphite, and many other metals. The result of
Herring can be understood from the following simple consid-
erations [17]: Let the two electron bands marked by indexes 1
and 2 be degenerate at a quasimomentum p0 and hence have
the same energy ε0 at this point. The k · p Hamiltonian Ĥ for
these bands in the vicinity of p0 has the form

Ĥ =
(

E11 E12

E12 E22

)
, (1)

where E12=v12 · (p − p0), E11=ε0 + v11 · (p − p0), E22 =
ε0 + v22 · (p − p0), and vij are the matrix elements of the
velocity operator for the electron states 1 and 2 at point p0.
Note that v12 and E12 are real quantities for metals with
inversion symmetry and with negligible spin-orbit interaction.
The diagonalization of the Hamiltonian (1) gives the dispersion
relation for the two bands in the vicinity of point p0,

ε1,2(p) = ε0 + v+ · (p − p0) ± {[v− · (p − p0)]2

+ [v12 · (p − p0)]2}1/2, (2)

where v+ ≡ (v11 + v22)/2, v− ≡ (v11 − v22)/2 [18]. It fol-
lows from Eq. (2) that the spectrum has the Dirac form in the
plane passing through vectors v− and v12, and the degeneracy
of bands 1 and 2 is not lifted along the straight line passing
through point p0 in the direction of the vector z = [v− × v12],
which is perpendicular to the plane. In other words, existence
of the band-degeneracy point leads to the existence of the
band-contact line passing through this point. Of course, this
degeneracy line exists not only near p0. If one takes into
account terms of higher order in p − p0 in the expansions of
Eij , the band-contact line will be determined by the two equa-
tions: E11(p) − E22(p) = 0, E12(p) = 0. Such band-contact
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FIG. 1. The Fermi surfaces near εc = εmin at ã2 < 1 (here ã = 0):
(a) εF < εmin and (b) εF > εmin. The band-contact line is shown by
the dashed line. If εc − εmin increases, the two conical points in panel
(b) become widely separated. The inset shows the FS near one of
these points when εmin < εF < εmax, and εF is far away from these
critical energies.

lines are either closed curves in the Brillouin zone or end on
the surface of this zone. In both cases the energy ε0 of the two
touching bands in the degeneracy line is a periodic function of
p0 running this line, and ε0 changes between its minimum εmin

and maximum εmax values. In experiments, the band-contact
lines in metals can be, in principle, detected via the phase
analysis of the de Haas–van Alphen (or Shubnikikov–de
Haas) oscillations since the phase of these oscillations is
determined by the number of the band-contact lines penetrating
the appropriate cross section of the Fermi surface [19–21].

Let the Fermi level εF of the metal lie in the interval:
εmin < εF < εmax. Then, the Fermi surface ε1,2(p) = εF of this
metal in the vicinity of point p0 defined by [22] ε0(p0) = εF

consists of two cones with the common vertex p0 and the same
vertex angle penetrated by the band-contact line, see the inset
in Fig. 1. One of the cones corresponds to band 1, and the
second cone corresponds to band 2. In other words, the Fermi
surface has a self-intersecting shape [17]. At εF = εmin this
self-intersecting FS appears, and at εF = εmax it disappears,
i.e., at these critical energies the electron topological transi-
tions occur, Figs. 1 and 2. These transitions were named the
appearance (disappearance) of the self-intersecting FSs [17].

Consider now the spectrum of the two bands near the critical
point p0 at which ε0(p0) = εc where εc = εmin or εmax. If p is
measured from this p0, then we arrive at

ε1,2(p) = εc + B+p2
‖ + v⊥

+ · p⊥ ± [(B−p2
‖ + v− · p⊥)2

+ (B12p
2
‖ + v12 · p⊥)2]1/2, (3)

where p‖ is the component of p parallel to vector z, i.e., to the
band-contact line at point p0, whereas p⊥ is the component

FIG. 2. The Fermi surfaces near εc = εmax at 0 < ã2 < 1: (a)
εF < εmax and (b) εF > εmax. The band-contact line is shown by
the dashed line.

perpendicular to z. Equation (3) takes into account that v‖
+ = 0

at the point where ε0 reaches its extremum, and so we have
included terms proportional to p2

‖ in the elements Eij of
Hamiltonian (1) (the coefficients B+, B−, and B12 are some
constants; B−, B12 are different from zero if the band-contact
line is not a straight line, i.e, if it is not a symmetry axis of the
crystal). Expression (3) is the most general form of the electron
spectrum near the critical energy εc. To analyze this spectrum,
let us set the coordinate axis z along vector z, and hence the x-y
plane coincides with the plane of vectors v− and v12. Without
loss of generality, we may also assume that axes px and py

are chosen so that the quadratic form (v− · p⊥)2 + (v12 · p⊥)2

under the root sign in Eq. (3) is diagonal and hence takes the
form bxxp

2
x + byyp

2
y where

bxx = (v−)2
x + (v12)2

x, byy = (v−)2
y + (v12)2

y.

Besides, at a fixed pz we will measure px and py from
the band-contact line, i.e., from the point p⊥(pz) defined by
the equations: v12 · p⊥ + B12p

2
z = 0, v− · p⊥ + B−p2

z = 0. In
this coordinate system the band-contact line is straight px =
py = 0, and Eq. (3) reduces to the formula,

ε1,2(p) = εc + Bp2
z + v⊥

+ · p⊥ ± [
bxxp

2
x + byyp

2
y

]1/2
, (4)

where

B = det

⎛
⎝ B+ B− B12

(v+)x (v−)x (v12)x
(v+)y (v−)y (v12)y

⎞
⎠

×
[

det

(
(v−)x (v12)x
(v−)y (v12)y

)]−1

.

It is important to emphasize that the spectrum (4), in fact,
depends only on two essential parameters. Indeed, changing
the variables px, py , and pz as follows: p̃x = √

bxxpx,

p̃y = √
byypy, p̃z = √|B|pz, and rotating the axes p̃x, p̃y
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FIG. 3. The Fermi surfaces near εc = εmin at ã2 > 1: (a) εF < εmin

and (b) εF > εmin. The band-contact line is shown by the dashed line.

through some angle, one can reduce Eq. (4) to the formula,

ε1,2(p̃) = εc + sgn(B)p̃2
z + ãp̃x ± [

p̃2
x + p̃2

y

]1/2
, (5)

where sgn(x) = ±1 for x > 0 and x < 0, respectively, and

ã2 ≡ (v+)2
x

bxx

+ (v+)2
y

byy

. (6)

Thus, the spectrum is substantially determined by a value of
ã which characterizes the shape of the FS (see Figs. 1–3) and
by a sign of B which specifies if the self-intersecting surfaces
appear or disappear at ε = εc. The electron spectrum near any
critical point of interest can be reduced to expression (5).

If a weak spin-orbit interaction is taken into account,
inspection of a narrow “tube” in the place of the band-contact
line becomes more appropriate in analyzing the electron
energy spectra. Inside this tube the two bands closely approach
each other without their touching. Hence the intersection of the
appropriate Fermi surfaces, strictly speaking, does not occur
(there is a small space gap between them). However, as our
analysis shows, this fact has no essential effect on the results
presented below, and so we, as a rule, neglect the spin-orbit
interaction here. For reference, we note that with the spin-orbit
interaction, the spectrum (5) transforms into

ε1,2(p̃) = εc + sgn(B)p̃2
z + ãp̃x ± [

�2 + p̃2
x + p̃2

y

]1/2
, (7)

where � is the energy gap between the bands at p̃ = 0.
Interestingly, at ã �= 0 a minimum of the upper band and a
maximum of the lower band in p̃⊥ occur at different values of
p̃⊥, and the spectrum (7) is characterized by the indirect energy
gap 2�min = 2�(1 − ã2)1/2. At ã2 > 1 the indirect gap is zero.

III. ELECTRON TOPOLOGICAL TRANSITIONS
OF 3 1

2 KIND

Near εF = εc the density of the electron states ν(εF )
calculated per unit volume of the crystal is the sum of its
regular part νreg(εF ) and of its singular part δν(εF ). The latter
is due to the electron topological transitions mentioned above
and differs from zero when �εF ≡ (εF − εc)sgn(B) > 0. This
singular δν(εF ) exists only if ã2 < 1,

δν(εF ) = 4(�εF )3/2

3π2�3|B|1/2(1 − ã2)3/2(bxxbyy)1/2
, (8)

where we have taken into account the double degeneracy of
the electron states in spin. At ã = 0 formula (8) reproduces
the density of the electron states near a critical energy in
wurtzite-type crystals [17,23]. If ã2 > 1, the singular term
is absent. Note that the singularity in the density of the
electron states δν ∝ (εF − εc)3/2 is weaker than the singularity
δν ∝ (εF − εc)1/2 at the well-known topological transitions
of 2 1

2 kind [9,11,12,17] when a Fermi-surface void appears
(disappears) or a neck of the Fermi-surface forms (disrupts).
It also follows from formula (8) that the singular contribution
to the � potential now has the form δ�(εF ) ∝ (εF − εc)7/2,
and the topological transitions considered here are the 3 1

2 -
order transitions according to the classification of Lifshits
[9,17].

It is known [24] that the topological properties of any
closed surface are completely determined by the number of
its components (its disconnected parts) and by the number of
handles for each of the components. How can the transitions
consisting in appearing (disappearing) of the self-intersecting
Fermi surfaces be understood from this point of view? (Recall
that, in reality, there is a small gap between the touching FSs
if one takes into account a weak spin-orbit interaction, and the
intersection of the surfaces, strictly speaking, does not occur.)
It is clear from Fig. 1 that at ã < 1 the appearance of the
self-intersecting FS is equivalent to the disappearance of the
handle that exists in the FS of the first band at εF < εmin

and to the simultaneous appearance of the ovaloid of the
second band. The transformation of the FS for the first band
can also be interpreted as the disruption of the Fermi-surface
neck, and the choice of the interpretation depends on the
shape of this FS far away from the critical point. In Fig. 2
we show the disappearance of the self-intersecting FS in the
vicinity of εmax at ã < 1. This transition is equivalent to
the disappearance of the void of the first band and to the
formation of the neck on the FS of the second band (or to
the appearance of the handle in another interpretation). For
these two combined transitions at εmin and εmax, the changes in
the Fermi-surface components or their handles are evident.
On the other hand, at ã > 1 the appearance of the self-
intersecting FS does not change the number of its components
and handles, Fig. 3. In other words, there is no topological
transition at ã > 1, and it is for this reason that the density of
the electron states does not exhibit any singularity in this case.
In this context, it would be more proper to name the topological
transitions discussed here the combined electron topological
transitions rather than the appearance (disappearance) of the
self-intersecting Fermi surfaces.

155122-3



G. P. MIKITIK AND YU. V. SHARLAI PHYSICAL REVIEW B 90, 155122 (2014)

At the combined topological transitions of the 3 1
2 kind the

singularities of the physical quantities that are proportional
to the density of the electron states ν or its derivative
dν/dεF are weaker than the singularities at the topological
transitions of the 2 1

2 kind. This makes detection of the 3 1
2 -order

transitions difficult with measurements of these quantities.
However, these transitions can be detected with magnetic
susceptibility since its orbital part generally is not determined
by the density of the electron states, and at the 3 1

2 -order
transitions the component χzz of the magnetic-susceptibility
tensor turns out to exhibit a giant diamagnetic anomaly [25].
At low temperatures T , T � �εF , and weak magnetic
fields H, H � HT ≡ T 2c/[e�(bxxbyy)1/2(1 − ã2)3/2], one
has [25]

χ0
zz(εF ) = − e2

6π2c2�

(
bxxbyy

|B|
)1/2 (1 − ã2)3/2

(�εF )1/2
. (9)

Thus, the anomaly is the large peak in the εF dependence
of |χ0

zz|. Interestingly, the singularity in the susceptibility
χ0

zz(εF ) ∝ (�εF )−1/2 is the same as the singularity in the
thermoelectric power at the 2 1

2 -order transitions [11]. The
divergence of expression (9) for �εF → 0 should be cut off
at �εF ∼ T , and this cutoff determines the magnitude of the
diamagnetic peak in the weak magnetic fields.

In the case of H > HT the magnetic susceptibility near the
points of the 3 1

2 -order transitions were theoretically studied in
detail in Ref. [26] using the exact expression for the electron
Landau levels in the vicinity of these points at the magnetic
field H ‖ z,

ε1,2(l,p̃z) = εc + sgn(B)p̃2
z ±

[
eHα

c�
l + �2

min

]1/2

, (10)

where α = 2(bxxbyy)1/2(1 − ã2)3/2, ã2 < 1, l is a non-
negative integer (l = 0,1, . . .), and �min = �(1 − ã2)1/2.
At ã2 > 1 the shape of the FS near the touching points
(see Fig. 3) does not lead to the discrete spectrum in
the magnetic field, and formula (10) fails. With spec-
trum (10), we obtain at high magnetic fields H � H̄ ≡
max[HT ,HT (�εF )2/T 2,HT (�min)2/T 2] [26],

χzz(H ) = − 3f0

25/4π2

e7/4(bxxbyy)3/8(1 − ã2)9/8

c7/4�5/4|B|1/2H 1/4
, (11)

where f0 ≈ 0.156. Expression (11) can also be rewritten in the
form χzz(H ) = (9f0/

√
2)χ0

zz(εF )(H̄ /H )1/4 which reveals the
H dependence of the diamagnetic peak magnitude and shows
that the giant anomaly is suppressed in strong magnetic fields.

Finally, it is worth noting that the band-contact lines in
crystals can, in principle, intersect each other, and at the
points of their intersection more exotic electron topological
transitions than the 3 1

2 -order transitions considered here are
possible. At some of these exotic transitions the magnetic
susceptibility can exhibit unusual anomalies [27].

IV. CONCLUSIONS

We have theoretically studied the electron topological
transitions of the 3 1

2 kind associated with band-contact lines
in 3D metals. In the 3D metals with inversion symmetry and
a weak spin-orbit interaction these transitions are widespread
no less than the well-known 2 1

2 -order transitions of Lifshits.
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