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Abstract We consider electron topological transitions associated with certain points
of band-contact lines in metals. These transitions are 3 1

2 kind according to the classi-
fication of Lifshits and are widespread in metals with inversion symmetry and a weak
spin-orbit interaction. The 3 1

2 -order transitions can be detected with the magnetic
susceptibility. As an example, we consider these transitions in graphite.
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1 Introduction

At electron topological transitions of 2 1
2 kind a pocket of the Fermi surface (FS)

appears (disappears), or a neck of the FS forms (disrupts) [1–4]. These transitions
occur at the critical points pc in the Brillouin zone at which the electron energy ε
has an extremum or a saddle point in its dependence on the quasi-momentum p. A
small vicinity of such a point gives the singular (nonanalytic) contribution δν(εF)
to the electron density of states ν(εF), δν ∝ (εF − εc)

1/2, where εF is the Fermi
energy of the metal, and εc = ε(pc) is the critical energy. It is also known [2] that
if a contact line of two electron energy bands exists in the Brillouin zone, the Fermi
surface can have a self-intersecting shape, and the points of the line at which such
surfaces appear or disappear correspond to electron topological transitions, too. At
these points in the band-contact lines the common energy of the two touching bands
reaches its maximum or minimum. In this paper we discuss the topological transitions
associated with the appearance (disappearance) of self-intersecting Fermi surfaces in
metals [5]. It turns out that these transitions are 3 1

2 kind according to the classification
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of Lifshits [1]. We also point out how these transitions can be detected in experiments.
As an example, we consider the transitions in graphite.

2 Electron topological transitions

It is common knowledge that the contact of the electron energy bands in a metal can
occur at symmetry points and along symmetry axis of its Brillouin zone. Besides,
as was shown by Herring [6], there are lines of an accidental contact between two
bands in crystals. The term ”accidental” means that the degeneracy of electron states
is not caused by their symmetry. Such band-contact lines are widespread in metals
with inversion symmetry and with a weak spin-orbit interaction. This follows from
one of Herring’s results [6]: if there is a point of an intersection of two energy bands
in an axis of symmetry of the Brillouin zone, a band-contact line perpendicular to
the axis has to pass through this point. Intersection of the bands at points in the
axes frequently occurs even in simple metals [7]. The literature data show that the
lines of the accidental contact exist, for example, in Be, Mg, Zn, Cd, Al, and many
other metals. Besides, the band-contact lines occur in graphite [8–10], rhombohedral
multilayer graphene [11,12], three dimensional graphene networks [13], and in bcc
Fe [14]. These lines (called the Dirac line nodes) exist also in the topological line-
node semimetals Ca3P2 [15] and Cu3NPd [16,17]. In experiments, the band-contact
lines in metals can be, in principle, detected via the phase analysis of the de Haas-van
Alphen (or Shubnikikov-de Haas) oscillations since the phase of these oscillations
is determined by the number of the band-contact lines penetrating the appropriate
cross-section of the Fermi surface [18–20].

The band-contact lines are either closed curves in the Brillouin zone or end on
the surfaces of this zone. In both the cases the energy of the two touching bands
in the degeneracy line is a periodic function of the quasi-momentum running this
line, and the energy of the bands changes between its minimum εmin and maximum
εmax values. At this εmin the self-intersecting FS necessarily appears and at εmax it
disappears. Thus, these electron topological transitions are widespread in metals no
less than the 2 1

2 -order transitions of Lifshits.
Consider the point pc in a contact line of the bands 1 and 2 at which the common

energy of the two bands reaches its extremum εc. The spectrum of these two bands
near this critical point can be always represented in the form [5]:

ε1,2(p) = εc +Bp2
z +v⊥ ·p⊥±

[
bxx p2

x +byy p2
y
]1/2

, (1)

where the quasi-momentum p is measured from pc, p⊥ = (px, py), the pz axis is along
the tangent to the band-contact line at the point pc, and constants B, v⊥ = (vx,vy),
bxx > 0, byy > 0 are the parameters of the spectrum. The parameter B is positive
if εc = εmin, and B < 0 if εc = εmax. As shown in Ref. [5], the shape of the self-
intersecting surfaces essentially depends on the only parameter,

ã2 ≡ v2
x

bxx
+

v2
y

byy
. (2)
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Fig. 1 The Fermi surfaces near εc = εmin at ã2 < 1. Bottom: εF < εmin. Top: εF > εmin. The band-contact
line is shown by the dash line. The numbers 1 and 2 mark the Fermi surfaces corresponding to the bands 1
and 2.

If ã2 < 1 and the difference εF − εc changes, the appearance of the self-intersecting
Fermi surface occurs in the manner shown in Fig. 1. This topological transition can
be considered as a combination of the two transitions, viz. the Fermi-surface neck of
the band 1 disrupts, and simultaneously a new pocket of the band 2 appears. In the
case ã2 > 1, although the self-intersecting Fermi surface appears or disappears when
εF crosses εc, its topological properties do not change at this crossing [5]. In other
words, the electron topological transition occurs only at ã2 < 1.

Near εF = εc the density of the electron states ν(εF) calculated per unit volume
of the crystal is the sum of its regular part νreg(εF) and of its singular part δν(εF).
The latter is due to the electron topological transition and differs from zero when
∆εF ≡ (εF − εc)sgn(B)> 0. This singular δν(εF) exists only if ã2 < 1,

δν(εF) =
4(∆εF)

3/2

3π2h̄3|B|1/2(1− ã2)3/2(bxxbyy)1/2
, (3)

where we have taken into account the double degeneracy of the electron states in spin.
If ã2 > 1, the singular term is absent. It follows from formula (3) that the topological
transitions considered here are the 3 1

2 -order transitions according to the classification
of Lifshits [1,2]. Note also that the singularity in the density of the electron states,
δν ∝ (εF −εc)

3/2, is weaker than the singularity δν ∝ (εF −εc)
1/2 at the well-known

topological transitions of 2 1
2 kind [1–4]. This change of the singularity, e.g., at the

appearance of the pocket in Fig. 1 is due to the following: The transverse dimensions
of the new Fermi-surface pocket of the band 2 are proportional to ∆εF and hence
are small as compared to its longitudinal dimension that is proportional to (∆εF)

1/2.
Then, one has δN ∝ (∆εF)

5/2 for the number of the electrons in the pocket and
δν ∝ (∆εF)

3/2. On the other hand, in the case of the appearance of a Fermi-surface
pocket at the electron topological transition of 2 1

2 kind, all its dimensions are of the
order of (∆εF)

1/2, δN ∝ (∆εF)
3/2, and δν ∝ (∆εF)

1/2.
At the topological transitions of the 3 1

2 kind the singularities of the physical
quantities that are proportional to the density of the electron states ν or its deriva-
tive dν/dεF are weaker than the singularities at the topological transitions of the
2 1

2 kind. This makes a detection of the 3 1
2 -order transitions difficult with measure-

ments of these quantities. However, these transitions can be detected with the mag-
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Fig. 2 The schematic representation of the dependences of the electron energy bands εi (i = 1− 4) in
graphite on the quasi-momentum p near the edge HKH of its Brillouin zone. Shown are the dependences

εi(pz) at p⊥ = 0 and the dependences of εi on p⊥ =
√

p2
x + p2

y at some characteristic values of pz according
to the model [23]. The dashed line marks the position of the Fermi level εF . The top insert shows the
Brillouin zone of graphite and its characteristic points. The lower insert schematically shows the four
contact lines of the bands ε2(p) and ε3(p) in the vicinity of the edge HKH.

netic susceptibility since its orbital part generally is not determined by the density of
the electron states, and at the 3 1

2 -order transitions the component χzz of the magnetic-
susceptibility tensor exhibits a giant diamagnetic anomaly [21]. At low temperatures
T ≪ ∆εF ≡ (εF − εc)sgn(B) and weak magnetic fields H, one has for ∆εF > 0 [21]

χzz(εF) =− e2

6π2c2h̄

(
bxxbyy

|B|

)1/2 (1− ã2)3/2

(∆εF)1/2 . (4)

Thus, the anomaly is the large peak in the εF -dependence of |χzz|. Interestingly, the
singularity in the susceptibility, χzz(εF) ∝ (∆εF)

−1/2, is the same as the singularity
in the thermoelectric power at the 2 1

2 -order transitions [3]. The divergence of expres-
sion (4) for ∆εF → 0 should be cut off at ∆εF ∼ T , and this cut-off determines the
magnitude |χzz|max ∝ T−1/2 of the diamagnetic peak at weak magnetic fields. With
increasing magnetic field, the energy spacing ∆εH ∝ H1/2 between the Landau levels
begins to exceed the temperature. In this case the magnitude of the diamagnetic peak
is determined by this spacing, and we have |χzz|max ∝ (∆εH)

−1/2 ∝ H−1/4 [22].

3 Graphite

Figure 2 shows the Brillouin zone of graphite and its four electron energy bands
εi(p) (i = 1− 4) near the edge H-K-H of this zone. These bands are described by
the model of Ref. [23], and parameters of this model were found from the analysis
of various experimental data [24]. We use these parameters in all the calculations
below. The line P0-K-P0 is the contact line of the bands ε2(p) and ε3(p). Besides,
near this line there are three additional lines of the accidental contact of the same
bands [8,9], see Fig. 2. These additional lines cross the plane pz = 0 at the small
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Fig. 3 Dependence of the specific magnetic susceptibility χ∥ of graphite on the position of the Fermi
level εF at temperature T = 10 K. The dashed lines mark the critical energies εc for the central and side
band-contact lines.

distance p0
⊥ = 0.0554(h̄/a0) from the point K. Here a0 = 2.461 · 10−8 cm is the in-

plane lattice parameter of graphite.
For the central band-contact line P0-K-P0, the minimum εc of the common energy

of the two bands is reached at the point K (i.e., at pz = 0), εc = −40 meV, and the
parameters of the spectrum (1) are the following: vx = vy = 0, B = B̃(c0/h̄)2, bxx =
byy = b̃(a0/h̄)2 where B̃ = 10 meV, b̃ = 0.2992 eV2, and c0 = 6.708 · 10−8 cm is
the lattice parameter along the z axis of graphite. For the side band-contact lines, the
minimum εc of the common energy of the bands ε2(p) and ε3(p) is reached at pz = 0,
p⊥ = p0

⊥. At these points εc = −34.4 meV, and the parameters of the spectrum (1)
are vx = ṽx(a0/h̄), vy = 0, B = B̃(c0/h̄)2, bxx = b̃xx(a0/h̄)2, byy = b̃yy(a0/h̄)2 where
the px axis is along the direction KΓ , ṽx = 0.1957 eV, B̃ = 7.2 meV, b̃xx = 0.2744
eV2, and b̃yy = 2.4809 eV2.

With these parameters of the band-contact lines, we calculate the dependence of
the specific magnetic susceptibility χ∥ of graphite along the z axis on the position of
the Fermi level εF , Fig. 3. In the calculation of χ∥ we use formula (4) generalized
to the case of finite temperature [21], the density of graphite ρ = 2.2 g/cm3, and
we take into account that there are two points K and 6 side critical points in the
Brillouin zone. Formula (4) gives only the susceptibility of the electron states near the
critical points in the band-contact lines. All other electron states produce a practically
constant contribution to χ∥, and we omit this contribution here. The data shown in
Fig. 3 are valid in weak magnetic fields when ∆εH < T < 3.6 meV. The value 3.6
meV is the height of the energy barrier separating the εc for the side band-contact
lines from the εc of the central line. When the distance between the Landau levels ∆εH
exceeds this value, the critical points of the band-contact lines cannot be considered
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separately, and χ∥ will change. If T = 10 K, the criterion of weak magnetic fields,
∆εH < T , holds at H < 130 Oe since ∆εH ∼ 0.88

√
H[Oe] K for the central critical

point.
Finally, we note that the 3 1

2 -order topological transition in beryllium was theoret-
ically investigated in Ref. [25].

4 Conclusions

We have theoretically studied the electron topological transitions of the 3 1
2 kind as-

sociated with band-contact lines in metals. These transitions can be detected with
measurements of the magnetic susceptibility. As an example, we have presented the
magnetic susceptibility calculated near electron topological transitions of the 3 1

2 kind
in graphite.
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