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For the nonlinear self-dual network equations and the equivalent Hirota lattice equation the pair collision processes of
two discrete breathers, breather and one-parametric soliton (kink, antikink), breather and linear wave, one-parametric
soliton and linear wave are described. The explicit expressions of the “kink-breather” and “breather-breather” solutions
are constructed. The shifts of the center-of-masses and phases of the breather oscillations have been expressed in terms
of the dynamical characteristics of linear and nonlinear excitations of the system.

1. Introduction

The dynamics of strongly excited low-dimensional lattices
is described by nonlinear equations, but only a few of them
can be solved exactly using the soliton theory. The most
famous integrable discrete models are the Toda lattice1) and
the Ablowitz–Ladik system.2) Multi-soliton solution of the
Toda lattice equation has been found by Hirota.3) The Toda
lattice soliton is the pulse with the supersonic velocity (shock
wave). Ablowitz and Ladik2) have solved the integrable
version of the discrete Nonlinear Schrödinger equation which
is called the Ablowitz–Ladik (AL) equation using the inverse
scattering method. In contrast to a pulse soliton of the Toda
equation the AL soliton is two-parametric spatially localized
and time periodic solution, i.e., it is a discrete version of
breather-like excitation.4) Hirota5) has considered the exactly
integrable system of the nonlinear lumped self-dual network
(NLSDN) equations and has found its multi-soliton solutions.
These equations describe the propagation of electrical signals
in a cascade of four-terminal nonlinear LC self-dual circuits
with the nonlinear dependence of the capacitance on the
voltage and of the inductance on the current, respectively.
The NLSDN equations are equivalent to the discrete modified
Korteweg–de Vries (DMKdV) equation. Hirota has shown5)

that in the weakly nonlinear and continuum limit NLSDN
and DMKdV equations reduce to the modified Kortewg–
de Vries (MKdV) equation.

In the last decade the nonlinear solitonic transmission lines
are investigated intensively.6) Solitons are used in the optical
and electrical transmission lines for high compacting of the
signals in processes of information transmission and data
storage. A great variety of the electrical solitonic trans-
mission lines and devices, providing the generation, filtering
and amplification of the solitonic pulses have been produced.
Ricketts et al.7) have introduced the electronic device
generating a periodic stable train of electrical solitons—
electrical soliton oscillator. The relative ease of the electronic
transmission lines manufacture gives them many advantages
over the photonic devices, involving light waves. Thus the
exact analytical investigation of propagation and interaction
of the discrete pulse solitons and breathers in the electrical
transmission line described by the exactly integrable
equations is the actual problem of mathematical physics
because the results of its solving can be applicable in the data
storage and transmission engineering.

Recently8) the exact discrete breather solutions for the
NLSDN equations have been found for the first time. The
discrete breather is the self-localized oscillation which
describes the intrinsic localized mode in a highly-localized
high-frequency limit9) and a dynamical bound state of the
soliton-antisoliton pair in the case of the small values of the
quasiwave number. Nimmo10) has obtained and verified the
multi-soliton solution of the NLSDN equations using
wronskian technique. Zhou et al. received breather solution
of the NLSDN equations using the wronskian technique.11) In
Ref. 12 the Hamiltonian dynamics of kinks and breathers is
investigated for the DMKdV and MKdV equations. These
nonlinear excitations are analogues of the shock waves and
self-localized oscillations of the Fermi–Pasta–Ulam model
which describes an anharmonic one-dimensional crystal. The
dependence of energy on the momentum for kinks and
quasiclassical spectra of energy for both continual and
discrete breathers are found. In Ref. 13 the new classes of
periodic solutions of the NLSDN equations describing the
breather and soliton lattices expressed in terms of the Jacobi
elliptic functions have been obtained.

It should be noticed that the Toda lattice model has exact
solutions in the form of one-parametric pulse solitons but has
no discrete breather solutions. The Ablowitz–Ladik model
has a discrete breather-like solution but has no one-
parametric pulse solitons. The remarkable feature of the
NLSDN equations which are considered in this article is that
it is the physically-important exactly-integrable discrete
model which has simultaneously one-parametric kinks,
antikinks and discrete breathers solutions. This makes it
possible within a given integrable model of 1D lattice system
to study analytically the processes of interaction between the
discrete breathers as well as with the one-parametric solitons.

It is known that the interaction of the arbitrary number of
solitons can be described by the sequence of their pair
collisions. Currie14) has extended the method of soliton
collision analysis for the breather solutions in continuous
systems. Thus it became possible to study the interaction of
breathers with each other and with the other excitations of
the system (kinks and linear waves). In Refs. 14 and 15 the
interaction of breathers, kinks and linear waves is investigated
for the sine-Gordon equation. In particular, using the “kink-
breather” solution it is possible to derive the so-called wobbling
kink or wobble solution. The wobble corresponds to a kink and
a breather sitting on top of each other and not having a relative
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translational motion. In Ref. 16 the wobbling kink of the sine-
Gordon equation is studied in detail. However up to the last
year a corresponding analysis of breather and soliton interaction
for discrete integrable models has been absent. Only very
recently in Ref. 17 the discrete wobbling kink solution for the
NLSDN equations have been obtained for the first time.

The problem of existence of an analogue of the sine-
Gordon breather in near integrable systems describing, in
particular, discrete models still remains of great interest.4)

Many efforts to obtain a stable sine-Gordon breather-like
excitation have failed because of the reason that there are
resonances in the dynamics of a localized excitation with the
spectrum of plane waves of the system. These resonances
lead to a radiation of energy out of the core of a local
excitation and to its temporal decay. It is well known that all
allowed plane wave frequencies fill a frequency range which
is called a linear spectrum. Most spatially continuous field
equations have the unbounded linear spectra. That makes
resonances of higher order harmonics of a localized
excitation with the linear spectrum unavoidable.

In the lattice systems with the acoustic linear spectrum
the cyclic frequency of linear excitations starts from zero,
depends periodically on the quasi-wave number and its
absolute value has always a finite upper bound. The discrete
breather has the main frequency and all its higher multiple
harmonics lying above the linear spectrum hence this
localized excitation will be dynamically stable. Due to the
stability there is a huge advantage for experimental physics
and engineering in the study of the breathers in discrete
systems, rather than continuous.4)

Thus the existence of the multi-soliton solution and the
explicit expressions for the moving discrete breathers of
NLSDN equations allows to describe exactly all interaction
processes of the excitations. In integrable equations solitons
keep their individuality, and their interaction results in the
center-of-mass shifts in the case of kinks and additionally to
the phase shifts of time oscillations in the case of breathers
and linear waves. In the present paper we investigate the pair
collision processes of the breathers with each other as well as
with one-parametric solitons (kinks, antikinks) and linear
waves. We discuss special cases: the interaction of a antikink
and standing breather; the interaction of a kink and a linear
wave; the interaction of moving and standing discrete
breather, the interaction of discrete breather and a linear
wave, as well as the linear superposition of two linear waves.

2. Hirota Lattice Model

In Ref. 5 Hirota has considered the nonlinear lumped self-
dual network equations:

1

1þ V2
n ðtÞ

dVnðtÞ
dt

¼ InðtÞ � Inþ1ðtÞ;

1

1þ I2nðtÞ
dInðtÞ
dt

¼ Vn�1ðtÞ � VnðtÞ; ð1Þ

which describe dependence of voltage and current in the n-th
capacitance and inductance, and are considered to be a
discrete version of the MKDV equation.

By introducing the function �nðtÞ:

VnðtÞ � d

dt
�nþ1=2ðtÞ; InðtÞ � d

dt
�nðtÞ ð2Þ

Hirota5) has transformed Eq. (1) into the form:

d

dt
�nðtÞ ¼ tanð�n�1=2 � �nþ1=2Þ ð3Þ

and derived for �nðtÞ the following equation, which is
equivalent to Eq. (3):

€�n

1þ _�2
n

¼ tanð�n�1 � �nÞ � tanð�n � �nþ1Þ; ð4Þ

where dot means the derivative on time. This equation can be
used to describe the dynamics of the 1D crystal, the Hirota
lattice, with the interaction force between the nearest atoms
proportional to the tangent of difference of their displace-
ments:8,12)

m €un

1þ �2

4

_u2n
s2

¼ 2�d0
�

tan
�

2

un�1 � un
d0

� �� �

� 2�d0
�

tan
�

2

un � unþ1

d0

� �� �
; ð5Þ

where �n is the displacement of the n-th atom of mass m,
s ¼ d0

ffiffiffiffiffiffiffiffiffi
�=m

p
is the velocity of sound, d0 is the lattice

constant, £ is the force constant.
In dimensionless variables: un=ð2d0=�Þ ¼ �n, �=ðd0=sÞ ¼ t

Eq. (5) reduces to Eq. (4).
Equation (4) can be derived from the Lagrangian:8)

L ¼
Xþ1

n¼�1

�
_�n arctan _�n �

1

2
lnð1þ _�2

nÞ

þ 1

2
ln½1þ tan2ð�n�1 � �nÞ�

�
: ð6Þ

Generalized momentum is found using Eq. (6):8)

pn ¼ @L

@ _�n

¼ arctan _�n: ð7Þ

The Hamilton function of the Eq. (4) has the form:8)

H ¼
Xþ1

n¼�1

�
1

2
lnð1þ tan2 pnÞ

þ 1

2
ln½1þ tan2ð�n�1 � �nÞ�

�
: ð8Þ

N-soliton solution of the Eq. (4) has the form:5)

�ðNÞ
n ðtÞ ¼ arctan

gðNÞn ðtÞ
fðNÞ
n ðtÞ ; ð9Þ

fðNÞ
n ðtÞ ¼

X
�¼0;1

ðeÞ exp
XN
i<j

Bij�i�j þ
XN
j¼1

�j�j

 !
;

gðNÞn ðtÞ ¼
X
�¼0;1

ðoÞ exp
XN
i<j

Bij�i�j þ
XN
j¼1

�j�j

 !
; ð10Þ

�j ¼ Kjn� �jt þ �ð0Þj ¼ Kjðn� XjðtÞÞ;

�j ¼ "j2 sinh
Kj

2

� �
;

"j ¼ �1: ðj ¼ 1; . . . ; NÞ; ð11Þ

aij � expðBijÞ ¼ ð�i � �jÞ2 � 4 sinh2½ðKi � KjÞ=2�
ð�i þ �jÞ2 � 4 sinh2½ðKi þ KjÞ=2�

¼ � cosh½ðKi � KjÞ=2� � "i"j
cosh½ðKi þ KjÞ=2� � "i"j

: ð12Þ
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From (12) it is seen that aij ¼ �jaijj � 0, jaijj > 1 if
KiKj < 0 and jaijj < 1 if KiKj > 0. Coefficients aj1...jm �
aðj1; . . . ; jmÞ are given by the formulas:

aðj1; . . . ; jmÞ ¼
YðmÞ
k<l

aðjk; jlÞ; m > 2,

1; m ¼ 0; 1.

8><
>: ð13Þ

By
Pðe;oÞ

�¼0;1 a sum over all sets (�1; . . . ; �N) is defined,
each �j is 0 or 1, and

PN
j¼1

ðe;oÞ�j is an (even, odd) integer,
respectively. Parameters "j can take the values ¹1 or +1 and
correspond to the sign of the solitons velocities. Coefficients
aij define the phase shifts of solitons during their collisions.
In the case of one-parametric solitons the shift �Xi of the
center-of-mass position (XiðtÞ ¼ Vit þ Xi0):

Xiðt ! þ1Þ ¼ Xiðt ! �1Þ þ�Xi ð14Þ
for the i-th soliton equals

�Xi ¼ � sign½KjðVi � VjÞ� ln jaijj
Ki

: ð15Þ

As it is seen from the Eq. (12), the shifts of two solitons
will be different depending on whether the solitons move in
one direction or towards each other. The initial phases are
denoted by �ð0Þj ¼ KjXj0. Hirota’s solution is valid for the
infinite interval n 2 ð�1;þ1Þ.

One-soliton solution (one-parametric soliton solution) of
the Eq. (4) is the kink. In mechanical model one-parametric
soliton corresponds to the supersonic pulse of compression
or stretching, in the model of the NLSDN equations one-
parametric soliton corresponds to the electrical pulse of the
current strength or voltage.

�ð1Þ
n ¼ arctan½expð�1Þ�; ð16Þ
�1 ¼ K1ðn� V1t � X10Þ ¼ K1ðn� X1ðtÞÞ; ð17Þ

where X1ðtÞ ¼ V1t þ X10 is the position of the one-parametric
soliton center-of-mass, �ð0Þ1 ¼ K1X10 is the arbitrary constant.
In the following we set this constant equal to zero for simplicity.

Kink (antikink in the case K1 < 0) is the nonlinear pulse
moving along the lattice with the velocity V1 � 1:

V1 ¼ "1
sinhðK1=2Þ

K1=2
: ð18Þ

Parameter �1 � 1=K1 is the effective width of kink.
Parameter "1 ¼ �1 defines the sign of the kink velocity.

Two-soliton solution is given as

�ð2Þ
n ¼ arctan

expð�1Þ þ expð�2Þ
1þ a12 expð�1Þ expð�2Þ
� �

: ð19Þ

Parameters �j; �j; "j; aij; ðj ¼ 1; 2Þ are defined according
to Eqs. (11) and (12).

In Ref. 8 the exact discrete breather solution has been
found. Discrete breather is the localized oscillation travelling
along the lattice. To get breather solution one has to take the
complex conjugative parameters of the two-soliton solution.
The breather solution has the form:

�ðbÞ
n ¼ arctan

sinhð	=2Þ
sinðk=2Þ

cosðkn� !t þ�0Þ
cosh 	ðn� Vt � X0Þ

� �
; ð20Þ

V ¼ "
sinhð	=2Þ cosðk=2Þ

	=2
;

Vph ¼ !

k
¼ "

coshð	=2Þ sinðk=2Þ
k=2

; ð21Þ
where k is the quasi-wave number, " ¼ �1. The amplitude of
the breather equals AðbÞ ¼ arctan½sinhð	=2Þ= sinðk=2Þ� and the
parameter � � 1=	 is the effective width of the breather.
Parameters �0; X0 are the arbitrary constants.

Unlike sine-Gordon breather the discrete breather (20) of
the NLSDN equations is a localized anti-phase oscillation.
The frequency of the discrete breather (20) lies above the
spectrum band of linear waves while the frequency of the
sine-Gordon breather lies below the lowest edge of the
optical-like spectrum of linear excitations.

Expressions (21) represent the center-of-mass velocity and
phase velocity of the carrier wave respectively. By ½ we
denote the frequency of breather oscillations. From the
expressions (21) it is seen that the carrier wave can propagate
either in the same or opposite direction with the center-of-
mass (envelope).

V "" Vph , k ¼ ½0þ 2�l; �þ 2�l�;
ðl ¼ 0; 1; 2; . . .Þ; ð22Þ

V "# Vph , k ¼ ½�þ 2�l; 2�þ 2�l�;
ðl ¼ 0; 1; 2; . . .Þ: ð23Þ

The center-of-mass velocity can take any values.
In Fig. 1 the standing discrete breathers with different

amplitude (effective width) are shown. Breather in Fig. 1(a)
has large amplitude and is highly localized (it is localized
approximately on the five lattice sites). Breather in Fig. 1(b)
has small amplitude and is weakly localized.

3. Collision of Breather and One-Parametric Soliton

Using the three-soliton solution �ð3Þ
n the interaction of

breather with one-parametric soliton (kink or antikink) was
described. To get the case “kink-breather” one has to bound
two solitons in breather in this solution.

�ð3Þ
n ¼ arctan

expð�1Þ þ expð�2Þ þ expð�3Þ þ a123 expð�1Þ expð�2Þ expð�3Þ
1þ a12 expð�1Þ expð�2Þ þ a13 expð�1Þ expð�3Þ þ a23 expð�2Þ expð�3Þ
� �

; ð24Þ

�1 ¼ K1n� �1t þ �ð0Þ1 ; �2 ¼ �	3 ¼ �þ i#; ð25Þ
K2 ¼ K	

3 ¼ 	þ ik; �2 ¼ �	
3 ¼ �þ i!; ð26Þ

# ¼ kn� !t þ�0; � ¼ 	ðn� X0Þ ��t; ð27Þ
�1 ¼ "12 sinh

K1

2
; � ¼ "2 sinh

	

2
cos

k

2
; ! ¼ "2 cosh

	

2
sin

k

2
; ð28Þ

"1 ¼ �1; "2 ¼ "3 ¼ " ¼ �1; ð29Þ
a12 ¼ a	13 ¼ � cosh½ðK1 � K2Þ=2� � "1"2

cosh½ðK1 þ K2Þ=2� � "1"2
� R expði
Þ; a23 ¼ sin2ðk=2Þ

sinh2ð	=2Þ ; ð30Þ
a123 ¼ a12a13a23: ð31Þ
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Parameters �ð0Þ1 ;�0; X0 are the arbitrary constants.
Solitons 2 and 3 we have bound in breather by choosing the complex conjugative parameters. As a result we get the “kink-

breather” solution that describes the lattice, containing one-parametric soliton and breather, propagating with the arbitrary
velocities.

�ðkbÞ
n ¼ arctan

expð�1Þ þ 1

R
ffiffiffiffiffiffi
a23

p cos#

cosh�

1

R

coshð�� lnRÞ
cosh�

þ expð�1Þ 1ffiffiffiffiffiffi
a23

p cosð#þ 
Þ
cosh�

2
6664

3
7775: ð32Þ

Let us consider the process of collision of one-parametric
soliton and breather. For definiteness we investigated the
situation when breather is standing (	 > 0; k ¼ �), and
antikink (K1 < 0) moves along the n-axis towards breather
("1 ¼ þ1). The asymptotes of the solution (32) for t ! �1
are:

�ðkbÞ
n ðt ! �1Þ ¼ arctan½expð�1Þ�

þ arctan
1ffiffiffiffiffiffi
a23

p cos#

coshð�� lnRÞ
� �

;

�ðkbÞ
n ðt ! þ1Þ ¼ arctan½expð�1 þ 2 lnRÞ�

þ �

2
� arctan

1ffiffiffiffiffiffi
a23

p cosð#þ 
Þ
cosh�

� �
:

ð33Þ

In Fig. 2 the process of antikink and standing breather
collision is shown.

For t ! �1 we have separated antikink and breather
[Fig. 2(a)], antikink approaches to the standing breather.
After that the collision process is performed, during which

antikink passes though the breather. For t ! þ1 antikink
moves away from standing breather [Fig. 2(b)]. Antikink
and breather recover their individuality and velocity. Dotted
line in the Fig. 2(b) corresponds to the antikink profile
if there would be no breather. The difference in the
asymptotes of the solution (32) before and after the collision
is the center-of-mass shifts of antikink and breather
(�X1;�Xb) and the shift of the breather phase of
oscillations (��):

X1ðt ! þ1Þ ¼ X1ðt ! �1Þ þ�X1 ð34Þ
Xbðt ! þ1Þ ¼ Xbðt ! �1Þ þ�Xb ð35Þ
�ðt ! þ1Þ ¼ �ðt ! �1Þ þ�� ð36Þ

�X1 ¼ � 2 lnR

K1

¼ � 2

K1

ln

cosh
K1 � 	

2

cosh
K1 þ 	

2

0
BBB@

1
CCCA � 0;

(a) (b)

Fig. 1. The discrete breather solutions of the Hirota lattice equation and equivalent NLSDN equations. t ¼ 0:0, k ¼ � (standing breathers). Balls indicate the
displacements of atoms. Lines connecting balls are guides for the eye. (a) 	 ¼ 3:0 (highly localized breather) (b) 	 ¼ 0:5 (small amplitude breather).

(a) (b)

Fig. 2. The process of antikink and standing breather collision "1 ¼ þ1, " ¼ þ1, K1 ¼ �1:5, 	 ¼ 1:5, k ¼ �. (a) Before the collision t ¼ �12:0, (b) after
the collision t ¼ þ12:0, dotted line corresponds to the antikink profile if there would be no breather.
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�Xb ¼ � lnR

	
¼ � 1

	
ln

cosh
K1 � 	

2

cosh
K1 þ 	

2

0
BBB@

1
CCCA � 0: ð37Þ

�� ¼ 
þ � ¼ �2 arctan
cosh 	=2

sinhK1=2

� �
þ �: ð38Þ

In the considered situation when breather stands and
antikink propagates along the n-axis towards breather, the
breather center-of-mass shifts to the negative direction of the
n-axis, the antikink center-of-mass shifts towards the positive
direction of the n-axis. The interaction of antikink and
breather has the character of the effective attraction.

In the general case for the arbitrary values of the
parameters of the “kink-breather” solution the center-of-mass
shifts of one-parametric soliton and breather and the shift of
breather phase of oscillations are given by the formulas:

�X1 ¼ � sign½	ðV1 � VbÞ� 2 lnR
K1

;

�Xb ¼ � sign½K1ðVb � V1Þ� lnR
	

: ð39Þ
�� ¼ þ sign½K1ðVb � V1Þ�
þ �: ð40Þ

R ¼
cosh

K1 � 	

2
� "1" cos

k

2

cosh
K1 þ 	

2
� "1" cos

k

2

;


 ¼ 2 arctan

cosh
K1

2
cos

k

2
� "1" cosh

	

2

sinh
K1

2
sin

k

2

0
BBB@

1
CCCA: ð41Þ

Obviously the quantity R is always greater than or equal to
zero for any values of the parameters K1; 	; k; "1; ", and

0 < R < 1 , K1	 > 0;

R > 1 , K1	 < 0:

�
ð42Þ

The quantity R ! 1 when the amplitude of the kink or
breather tends to zero (K1 ! 0 or 	 ! 0). Parameter ¤ varies
in the interval [��þ 2�l; �þ 2�l], l 2 Z.

The center-of-mass shifts correspond to the mutual
attraction of the one-parametric solitons (kinks, antikinks)
and breathers. From Eq. (39) it is seen that

�X1

�Xb

				
				 ¼ 2

	

K1

				
				: ð43Þ

In Fig. 3 the scattering data of the collision process of the
standing breather and kink are shown.

From the “kink-breather” solution, the wobbling kink
solution (Fig. 4) has been obtained.17) The wobbling kink
is a nonlinear superposition of the kink and breather,
the center-of-mass positions and velocities of which are
equal.

4. Collision of Two Breathers

Using the four-soliton solution �ð4Þ
n

�ð4Þ
n ¼ arctan

gð4Þn ðtÞ
fð4Þ
n ðtÞ ; ð44Þ

(a)

(b)

(c)

Fig. 3. The scattering data of the collision process of the standing breather
and kink. The center-of-mass shifts of the standing breather (a) and one-
parametric soliton (b) and the shift of breather phase of oscillations (c) as the
functions of the parameters K1; 	 of the “kink-breather” solution. K1 � 0,
	 � 0, k ¼ �, "1 ¼ þ1, " ¼ þ1.

Fig. 4. The wobbling kink solution of the Hirota lattice equation and
equivalent NLSDN equations. t ¼ 1:0, "1 ¼ þ1, " ¼ þ1, K1 ¼ 0:2, 	 ¼ 0:7,
k ¼ 0:39.
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gð4Þn ðtÞ ¼ e�1 þ e�2 þ e�3 þ e�4 þ a234e
�2þ�3þ�4

þ a134e
�1þ�3þ�4 þ a124e

�1þ�2þ�4 þ a123e
�1þ�2þ�3 ;

fð4Þ
n ðtÞ ¼ 1þ a12e

�1þ�2 þ a13e
�1þ�3 þ a14e

�1þ�4

þ a23e
�2þ�3 þ a24e

�2þ�4 þ a34e
�3þ�4

þ a1234e
�1þ�2þ�3þ�4 : ð45Þ

The interaction of two breathers, breather and linear wave
and two linear waves with each other was described. For this
purpose, as in the previous case of three-soliton solution, one
has to “bound” one-parametric solitons in breathers by
choosing the complex conjugative parameters. Solitons with
numbers 1 and 3 we have “bound” in one breather and
assigned it by the index 1, while the solitons with numbers 2
and 4 we have “bound” in another breather and assigned it by
the index 2.

K1 ¼ K	
3 � 	1 þ ik1; K2 ¼ K	

4 � 	2 þ ik2; ð46Þ
�1 ¼ �	3 ¼ �1 þ i#1; �2 ¼ �	4 ¼ �2 þ i#2; ð47Þ
�j ¼ 	jðn� Xj0Þ ��jt; #j ¼ kjn� !jt þ�j0;

ðj ¼ 1; 2Þ; ð48Þ

�j ¼ "j2 sinh
	j
2
cos

kj
2
; !j ¼ "j2 cosh

	j
2
sin

kj
2
;

ðj ¼ 1; 2Þ; ð49Þ
"3 ¼ "1 ¼ �1; "4 ¼ "2 ¼ �1; ð50Þ

a13 ¼ sin2ðk1=2Þ
sinh2ð	1=2Þ

; a24 ¼ sin2ðk2=2Þ
sinh2ð	2=2Þ

; ð51Þ

a12 ¼ a	34 ¼ �
cosh

K1 � K2

2
� "1"2

cosh
K1 þ K2

2
� "1"2

� R12 expði
12Þ;

a14 ¼ a	23 ¼ �
cosh

K1 � K4

2
� "1"2

cosh
K1 þ K4

2
� "1"2

� R14 expði
14Þ: ð52Þ

Parameters �10; X10;�20; X20 are the arbitrary constants. As a
result we get the “breather-breather” solution.

�ðbbÞ
n ¼ arctan

gðbbÞn ðtÞ
fðbbÞ
n ðtÞ ; ð53Þ

gðbbÞn ¼ 1ffiffiffiffiffiffi
a13

p expð��2Þ cos #1 � b1
2

� �

þ 1ffiffiffiffiffiffi
a24

p expð��1Þ cos #2 � b2
2

� �

þ 1ffiffiffiffiffiffi
a13

p expðþ�2Þ cos #1 þ b1
2

� �

þ 1ffiffiffiffiffiffi
a24

p expðþ�1Þ cos #2 þ b2
2

� �
; ð54Þ

fðbbÞ
n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R12R14

p
coshð�1 þ�2Þ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R12R14

p coshð�1 ��2Þ

þ
ffiffiffiffiffiffiffiffi
R12

R14

r
1ffiffiffiffiffiffiffiffiffiffiffiffi

a13a24
p cosð#1 þ #2Þ

þ
ffiffiffiffiffiffiffiffi
R14

R12

r
1ffiffiffiffiffiffiffiffiffiffiffiffi

a13a24
p cosð#1 � #2Þ; ð55Þ

b1 ¼ 
12 þ 
14 � 
1; b2 ¼ 
12 � 
14 � 2�þ 
2; ð56Þ


i ¼ �2 arctan
Fij

Gij
; ð57Þ

where

Fij ¼ 2 sinh
	j
2
sin

ki
2

cosh
	j
2
cos

ki
2
� "i"j cosh

	i
2
cos

kj
2

� �
;

ð58Þ

Gij ¼ 2 cosh
	j
2
cos

ki
2

cosh
	j
2
cos

ki
2
� "i"j cosh

	i
2
cos

kj
2

� �

� cosh2
	j
2
� cosh2

	i
2


 �
þ cos2

kj
2
� cos2

ki
2

� �
; ð59Þ

where i ¼ 1; 2, j ¼ 1; 2, i 6¼ j.
Let us consider the process of collision of two breathers.

For definiteness we took the case when the breather with
index 2 is standing (	2 > 0; k2 ¼ �), and breather with
index 1 (	1 > 0; k1 > 0) moves along the n-axis ("1 ¼ þ1)
towards breather 2. The asymptotes of the solution (47)–(51)
for t ! �1 are:

�ðbbÞ
n ðt ! �1Þ ¼ arctan

1ffiffiffiffiffiffi
a13

p cos#1

cosh½�1 � ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R12R14

p �
� �

þ arctan
1ffiffiffiffiffiffi
a24

p cosð#2 þ b2Þ
cosh½�2 þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R12R14

p �
� �

;

�ðbbÞ
n ðt ! þ1Þ ¼ arctan

1ffiffiffiffiffiffi
a13

p cosð#1 þ b1Þ
cosh½�1 þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R12R14

p �
� �

þ arctan
1ffiffiffiffiffiffi
a24

p cos#2

cosh½�2 � ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R12R14

p �

( )
:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð60Þ
In Fig. 5 the process of collision of moving and standing

breathers is shown.
For t ! �1 we have two separated breathers [Fig. 5(a)],

breather with index 1 approaches to the standing breather
with index 2. After that the collision process is performed,
during which breather 1 passes though the breather 2
[Fig. 5(b)]. For t ! þ1 breather 1 moves away from
breather 2. Both breathers recover their individuality and
velocity. The difference before and after the collision is the
center-of-mass shifts (�X1;�X2) and the shifts of the phases
of oscillations (��1;��2) [Fig. 5(c)]:

�X1 ¼ � 1

	1
ln

cosh2
�
	1 � 	2

2

�
� sin2

k1

2

cosh2
�
	1 þ 	2

2

�
� sin2

k1

2

2
6664

3
7775 � 0;

�X2 ¼ þ 1

	2
ln

cosh2
�
	1 � 	2

2

�
� sin2

k1

2

cosh2
�
	1 þ 	2

2

�
� sin2

k1

2

2
6664

3
7775 � 0; ð61Þ

��1 ¼ b1; ��2 ¼ �b2; ð62Þ
where the quantities b1; b2 are defined by Eqs. (56)–(59).

In the considered situation when breather 2 stands and
breather 1 propagates along the n-axis towards breather 2,
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the breather 2 center-of-mass shifts to the negative direction
of the n-axis, while the breather 1 center-of-mass shifts
towards the positive direction of the n-axis. The interaction of
breathers has the character of the effective attraction.

In the general case for the arbitrary values of the
parameters of the “breather-breather” solution the breathers
center-of-mass shifts and the phase of oscillations shifts are
given by the formulas

�X1 ¼ � sign½	2ðV1 � V2Þ� lnR12R14

	1
; ð63Þ

�X2 ¼ � sign½	1ðV2 � V1Þ� lnR12R14

	2
; ð64Þ

��1 ¼ þ sign½	2ðV1 � V2Þ�b1; ð65Þ
��2 ¼ þ sign½	1ðV2 � V1Þ�b2; ð66Þ

where the quantities R12; R14 equal:

R12 ¼
cosh

	1 � 	2

2
� "1"2 cos

k1 � k2

2

cosh
	1 þ 	2

2
� "1"2 cos

k1 þ k2

2

;

R14 ¼
cosh

	1 � 	2

2
� "1"2 cos

k1 þ k2

2

cosh
	1 þ 	2

2
� "1"2 cos

k1 � k2

2

ð67Þ

and the quantities b1; b2 are defined by Eqs. (56)–(59).
The expressions for the center-of-mass shifts contain the

product R13R14. It is easy to see that

0 < R12R14 < 1 , 	1	2 > 0;

R12R14 > 1 , 	1	2 < 0:

�
ð68Þ

The product R12R14 ! 1 when the amplitude of at least
one of the breathers tends to zero (	1 ! 0 or 	2 ! 0).
Parameters 
i vary in the interval [��þ 2�l; �þ 2�l],
l 2 Z.

The center-of-mass shifts correspond to the mutual
attraction of the breathers. From Eqs. (63)–(66) it is seen that

�X1

�X2

				
				 ¼ 	2

	1

				
				; ð69Þ

��1j j ¼ ��2j j: ð70Þ
We have investigated the collision process of the two equal

breathers (Fig. 6) with the following values of the parameters
	1 ¼ 	2 � 	 � 0, k1 ¼ k2 � k � 0, "1 ¼ þ1; "2 ¼ �1. In
this case Eqs. (63)–(66) reduce to

�X1 ¼ ��X; �X2 ¼ þ�X;

�X ¼ 1

	
ln

2ð1þ cos kÞ
ð1þ cosh 	Þðcosh 	þ cos kÞ
� �

: ð71Þ

��1 ¼ ���; ��2 ¼ þ��;

�� ¼ 2 arctan tanh
	

2
tan

k

2

� �
: ð72Þ

5. The Scattering of Linear Waves on the Kink and
Breather

Let us describe the process of passing a linear wave
through soliton. We seek a solution in the form:

�n ¼ �ðsÞ
n þ �ðLÞ

n ; �ðLÞ
n 
 �ðsÞ

n ; ð73Þ
where �ðsÞ

n is a multi-soliton solution, �ðLÞ
n is a linear wave.

Using the fact that Eqs. (3) and (4) are equivalent we will
analyze Eq. (3) instead of (4) because it is more simple. The
solutions, which we get will be valid for both Eqs. (3)
and (4).

After linearization in �ðLÞ
n , (3) is reduced to the equation:

d

dt
�ðLÞ
n ¼ ð�ðLÞ

nþ1=2 � �ðLÞ
n�1=2Þ½1þ tan2ð�ðsÞ

nþ1=2 � �ðsÞ
n�1=2Þ�: ð74Þ

Equation (74) describes the dynamics of linear wave at the
presence of arbitrary number of solitons and breathers given
by the multi-soliton solution �ðsÞ

n . Let us consider the process
of passing a harmonic vibration through one soliton (kink or
antikink). In this case Eq. (74) is reduced to:

d

dt
�ðLÞ
n ¼ ð�ðLÞ

nþ1=2 � �ðLÞ
n�1=2Þ 1þ

sinh2
K1

2

cosh2½K1ðn� V1tÞ�

8>>><
>>>:

9>>>=
>>>;
:

ð75Þ
The solution of the Eq. (75) is given by

(a)

(b)

(c)

Fig. 5. The process of collision of moving (number 1) and standing
(number 2) breathers, "1 ¼ þ1, "2 ¼ þ1, 	1 ¼ 1:2, 	2 ¼ 0:7, k1 ¼ 3:04,
k2 ¼ �: (a) before the collision t ¼ �380:0, (b) during the collision t ¼ 0:0,
and (c) after the collision t ¼ þ380:0.
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�ðLÞ
n ¼ �� cos




2
� tan




2
þ i tanh �1

� �
expði#Þ; ð76Þ

where �1 is defined by Eq. (17) and

# ¼ kn� !Lt; !L ¼ 2 sin
k

2
; ð77Þ


 ¼ 2 arctan

cosh
K1

2
cos

k

2
� "1"

sinh
K1

2
sin

k

2

0
BBB@

1
CCCA: ð78Þ

Equation (78) represent the shift of the linear wave
oscillations.

The same result can be obtained using the “kink-breather”
solution (32) when 	 ¼ 0. In this limit breather is delocalized
and reduced to the linear wave. Expression (32) reduces to
the form (�ðkbÞ

n ! �ðkLÞ
n ):

�ðkLÞ
n ¼ arctan

expð�1Þ þ � cosð#Þ
1þ � expð�1Þ cosð#þ 
Þ
� �

; ð79Þ

where � ¼ ða23Þ�1=2 
 1 is the small amplitude of the linear
wave, # ¼ kn� !Lt, !L ¼ 2 sinðk=2Þ is the dispersion law
for the linear waves. Expressions (39) and (40) are reduced in
the following way:

�X1 ¼ 0 ¼ �XL;

��L ¼ þ sign½K1ðVb � V1Þ�

� 2 arctan

cosh
K1

2
cos

k

2
� "1"

sinh
K1

2
sin

k

2

0
BBB@

1
CCCAþ �: ð80Þ

From Eq. (80) it is seen that during the collision of kink
and linear wave, kink does not undergo the center-of-mass
shift, and the linear wave has the shift of the oscillations.

Using the special case of the “breather-breather” solution
(53) when, for example, 	2 ! 0 the interaction between
breather and linear wave can be described. In this limit
breather 2 is delocalized and reduced to the linear wave.
Expression (53) reduces to the form (�ðbbÞ

n ! �ðbLÞ
n ):

�ðbLÞ
n ¼ arctan

1ffiffiffiffiffiffi
a13

p cos#1

cosh�1

þ expð��1Þ
cosh�1

� cos

�
#2 � b2

2

�
þ 1ffiffiffiffiffiffi

a13
p cos#1

cosh�1

þ expðþ�1Þ
cosh�1

� cos

�
#2 þ b2

2

�

2þ R12�
1ffiffiffiffiffiffi
a13

p cosð#1 þ #2Þ
cosh�1

þ R14�
1ffiffiffiffiffiffi
a13

p cosð#1 � #2Þ
cosh�1

2
6664

3
7775; ð81Þ

where � ¼ ða24Þ�1=2 
 1 is the small amplitude of the linear
wave, # ¼ kn� !Lt, !L ¼ 2 sinðk=2Þ is the dispersion law
for the linear wave. Expressions (63)–(66) are reduced in the
following way:

�X1 ¼ 0 ¼ �XL; ð82Þ
��1 ¼ 0; ð83Þ
��2 ¼ þ sign½	1ðV2 � V1Þ�

� 4 arctan

cosh
	1

2
cos

k2

2
� "1"2 cos

k1

2

sinh
	1

2
sin

k2

2

0
BBB@

1
CCCA: ð84Þ

From Eqs. (82)–(84) it is seen that during the collision of
breather and linear wave, breather does not undergo either

center-of-mass shift or shift of phase of oscillations, while the
linear wave has the shift of the oscillations.

If the amplitudes of both breathers in Eq. (53) tend to zero
(	1 ! 0; 	2 ! 0) we get the situation of “interaction” of two
linear waves (�ðbbÞ

n ! �ðLLÞ
n ).

�ðLLÞ
n � �1 cos#1 þ �2 cos#2; ð85Þ

where �1; �2 
 1 are the small amplitudes of the linear waves.

#j ¼ kjn� !Ljt; !Lj ¼ 2 sin
kj
2
; ðj ¼ 1; 2Þ: ð86Þ

Expressions (63)–(66) are reduced in the following way:

�X1 ¼ 0 ¼ �X2; ð87Þ
��1 ¼ 0; ð88Þ

(a) (b)

Fig. 6. The scattering data of the collision process of the two equal breathers. The modulus of the breather center-of-mass shifts (a) and the modulus of the
shift of breather phase of oscillations (b) as the functions of the parameters 	; k of the “breather-breather” solution. 	1 ¼ 	2 � 	 � 0, k1 ¼ k2 � k � 0,
"1 ¼ þ1, "2 ¼ �1.
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��2 ¼ �2�: ð89Þ
Obviously, during the “collision” of two linear waves there

are no shifts, except the shift of the one of the linear waves’
phase of oscillations by the value 2�. In the linear case the
linear superposition principle is valid.

The results obtained can be used in the experimental
investigations of the high accuracy data storage and trans-
mission in the electrical solitonic transmission lines.6) The
phase-shift analysis is of vital importance in establishing the
continuum density of states. This density of states will be, in
turn, important for the calculation of the classical statistical
mechanics of the Hirota lattice model.

6. Conclusion

For the nonlinear lumped self-dual network equations and
equivalent Hirota lattice equation the pair interaction
processes of the breathers with each other as well as with
one-parametric solitons (kinks, antikinks) and linear waves
are investigated. Using the obtained explicit expressions for
the “kink-breather” and “breather-breather” solutions we
completely analyse the collision process of the one-para-
metric soliton and breather and a scattering of two moving
breathers. To get the case “kink-breather” one has to “bound”
two solitons in breather in three-soliton solution by choosing
the complex conjugative parameters. And in order to get
“breather-breather” solution one has to “bound” one-para-
metric solitons in breathers (solitons with numbers 1 and 3
we have “bound” in one breather, while the solitons with
numbers 2 and 4 we have “bound” in another breather). The
analytical expressions for the scattering data, the center-of-
mass shifts of solitons and phase shifts of internal oscillations
of breathers have been obtained. The center-of-mass shifts
correspond to the attraction of one-parametric soliton (kink or
antikink) and breather and to the attraction of either two
solitons or two breathers with each other. It means that one-
parametric solitons and breathers of the nonlinear lumped

self-dual network equations and Hirota lattice equation
interact with each other by means of the effective short-
range forces of attraction.

The special cases of collision processes have been
discussed: the interaction of kink and standing breather; the
interaction of kink and linear wave; the interaction of moving
and standing discrete breather, the interaction of discrete
breather and linear wave, the linear superposition of two
linear waves.

Results obtained can be used for the quantitative
description of the discrete one-parametric soliton and
breather propagation and reflection from the free and fixed
boundaries in the lattice and in constructing the low-
temperature thermodynamics.
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