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SHORT NOTES

Dynamical features of bound states of topological solitons in highly dispersive
low-dimensional systems
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of Ukraine, pr. Lenina 47, Kharkov 61103, Ukraine
�Submitted July 19, 2007; revised August 6, 2007�
Fiz. Nizk. Temp. 33, 1406–1410 �December 2007�

The nonstationary dynamics and interaction of topological solitons �dislocations, domain walls,
fluxons� in one-dimensional systems with high dispersion are investigated. Processes of soliton
complex formation are studied analytically and numerically in relation to the strength of the dis-
persion, soliton velocity, and distance between solitons. It is demonstrated that stable bound soli-
ton states with complex internal structure can propagate in a dissipative medium owing to their
stabilization by external forces. © 2007 American Institute of Physics. �DOI: 10.1063/1.2807243�

The dynamical properties of topological defects and
structural inhomogeneities in low-dimensional crystals can
be described adequately in terms of soliton theory.1–3 For this
purpose it is customary to use quasi-one-dimensional lattice
models; in particular, for describing the dynamics of disloca-
tions �crowdions� the Frenkel–Kontorova model is used,4,5

and the properties of magnetic domain walls are investigated
in the framework of anisotropic models of Heisenberg
chains.6 As a consequence of the discreteness of such sys-
tems there is strong spatial dispersion of waves. Continuum
models can also have strong dispersion, e.g., in the case
when nonlocal interactions are taken into account. This is
valid, in particular, for macroscopic quantum systems, spe-
cifically for processes of propagation of magnetic flux quanta
�fluxons� in long Josephson junctions.7

Dislocations, domain walls, and fluxons are the simplest
examples of effectively one-dimensional topological
solitons—kinks. In the long-wavelength limit their properties
are described in terms of the sine-Gordon �SG� and double
sine-Gordon �DSG� equations.2 When the strong dispersion
due to nonlocal interactions or discreteness is taken into ac-
count, it becomes necessary to introduce integral terms or
higher-order spatial derivatives in the SG and DSG
equations.7–12 Here it would seem that the propagation of
solitons in a dispersive medium must necessarily be accom-
panied by strong radiation. However, first for discrete
systems13 and then for a number of continuum models with
strong dispersion7–12 a universal phenomenon was revealed:
the possibility of practically radiationless fast motion of
bound soliton complexes. This unique property makes multi-
soliton excitations extremely attractive from the standpoint
of applications. In this paper we investigate the dynamical
features of soliton complexes formed by strongly interacting
one-dimensional kinks in a highly dispersive medium.11

Physically such two-soliton states correspond, e.g., to a mov-
ing defect consisting of two neighboring dislocation half-
planes, or to a narrow 360° magnetic domain wall, which
arises even in the absence of magnetic field, or to a bound
pair of fluxons. Theoretically the internal structure of these

solitons can be studied in detail in models that lead to piece-
wise linear equations with strong dispersion.10–12 At the same
time, the nonstationary dynamics of complexes, the condi-
tions of their formation and stability, and the influence of
dissipative and external forces on them remain largely open
questions. In this paper we consider this circle of problems in
the framework of regularized SG and DSG equations with an
additional fourth spatio-temporal derivative.

Ordinarily in the long-wavelength approximation for dis-
crete systems, e.g., for the Frenkel–Kontorova model, which
is described by the discrete sine-Gordon equation13

�2un

��2 + 2un − un−1 − un+1 +
1

d2 sin un = 0, �1�

the higher dispersion is taken into account by keeping the
fourth spatial derivative in the expansion of the second dif-
ference un−1+un+1−2un�uxx+�uxxxx. Here the variable un is
the displacement of atom number n, d is the discreteness
parameter, x=n /d, and the parameter �=1 /12d2. The result
obtained from the equation with the fourth spatial derivative
has an important shortcoming: an artificially arising instabil-
ity of states with u=0,2� ,4�. . . with respect to excitation of
short waves. To avoid such instability in the equations of
hydrodynamics, Boussinesq first proposed to use a mixed
spatio-temporal derivative instead of the fourth spatial de-
rivative. Such a replacement was justified in the lattice
theory by Rosenau.14 The same idea was applied to the SG
and DSG equations with higher dispersion in Refs. 9–11. At
present this approach is actively being used for analytical
description of discreteness effects.15–17

The DSG equation with mixed fourth derivative has the
form9–11

utt − uxx − �uxxtt + sin u + 2H sin�u/2� = 0. �2�

The constant � in this equation is the dispersion parameter.
At H=0 and �=0, Eq. �2� becomes the usual SG equation,
which has a host of other applications besides the crowdion
model. In particular, the variable u�x , t� in the SG equation
describes the phase difference of the wave functions in su-
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perconductors in the model of a long Josephson junction.2

For magnetic applications the constant H in Eq. �2� has the
physical meaning of the magnetic field, and the variable �
=u /2 corresponds, for example, to the azimuthal angle of the
magnetization vector in an easy-plane ferromagnet.6

The dispersion relation of linear waves for Eq. �2� has
the form

��k� = ��1 + H + k2�/�1 + �k2� . �3�

Spectrum �3� has the peculiarity of being bounded in fre-
quency not only from below but also from above. This prop-
erty makes it similar to the spectrum of the initial discrete
model �1�. Moreover, at H=0 it simply coincides with the
spectrum of the SG model with a nonlocal interaction.7 It
follows from the dispersion relation �3� that the regularized
equation �2� does not suffer from the instability of states with
u=0,2� ,4�. . . with respect to short-wavelength excitations.
Thus in the framework of the regularized equation �2� it be-
comes possible to investigate in detail the dynamical features
of soliton complexes both analytically and numerically.

Equation �2� has important exact solutions, making it
possible to state certain rigorous results. The solution
u2��x�=4 arctan�exp�x�� for a static soliton �kink� of the
usual SG equation remains an exact solution of Eq. �2� for
H=0 and arbitrary �. Analogously the static solution of the
DSG equation, the so-called wobbler:2 uw�x�
=4 arctan�exp�qx+R��+4 arctan�exp�qx−R��, where q
=�1+H and sinh R=1 /�H, is the exact solution of equation
�2� for any �. It describes, e.g., a 360° domain wall formed
from two identical 180° domain walls in a ferromagnet.

The total spectrum of linear excitations of a static kink
of equation �2� at H=0 can be found in explicit form.18,19 It
turns out that, owing to dispersion, the kink now has internal
modes, and the number of them increases with increasing
parameter �, whereas the region of the continuous spectrum
becomes narrower and narrower. It is natural to suppose that
under conditions of strong dispersion the presence of internal
modes becomes the dominant factor in both the dynamics of
solitary kinks and kink coupling processes. Indeed, for Eq.
�2� a solution describing a moving complex consisting of two
strongly coupled � kinks has been found:9–11

u4��x,t� = 8 arctan�exp� x − V0t

l0
	
 . �4�

The velocity V0 of such a complex, its effective width l0, and
its energy E0 are specified functions of the parameters � and
H:

V0��,H� =�1 +
�

3
�1 +

3

2
H	2

−��

3
�1 +

3

2
H	 ,

l0 = �3�V0
2�1/4, E0 = 32�l0

−1 −
l0

9
	 . �5�

For H=0 expression �4� goes over to the exact solution
for the regularized SG equation. Equation �2� for any H�0
has other two-soliton solutions that correspond to “excited”
states of the soliton complex and have a characteristic inter-
nal structure.7,10,11 These solutions are found numerically,
and they correspond to a discrete set of velocity values.

The spectrum of oscillations of a moving kink at H=0 is
determined by a complicated linearized equation that can be
analyzed in the case of low velocities V and small values of
the parameter �. In a dispersive medium the motion of the
kink leads to coupled oscillations of its velocity and effective
width.18 For small � and V the dynamical properties of equa-
tion �2� should be close to those for a Lorentz-invariant SG
system.

In this study we have carried out a numerical simulation
of the dynamics of solitary kinks and soliton complexes. For
the solution of the equations in the fourth spatio-temporal
derivative we used a difference scheme analogous to that
proposed in Ref. 7, which has high stability, since it entails
the method of tridiagonal inversion. In the calculations the
time step was chosen equal to �t=0.0001 and the coordinate
step, as a rule, equal to �x=0.02; here the size of the system
was usually chosen equal to L=N ·�x, where N=3000. In
cases when boundary effects need to be eliminated or mini-
mized, we chose values N=6000 and 10000. The initial con-
ditions were chosen in accordance with the expressions for
the kink, wobbler, and soliton complex �4�, while the bound-
ary conditions were chosen in the form of fixed boundaries
with values u�0, t�=0 and, accordingly, u�L , t�=2� for a
kink, and u�L , t�=4� for a complex. The initial velocities Vin

of the kinks and complexes lay in the interval between 0.1
and 0.9, and typical values of the dispersion parameter were
�=1 /12, 1 /4, and 1.

As a result, for the case H=0 it was found that a solitary
kink at small values of the parameters � and Vin moves in a
practically steady manner, generating weak radiation with a
wave vector determined from the equation ��k0�=Vk0. With
increasing dispersion parameter the forward radiation van-
ishes, i.e., at fixed � there exist critical velocities Vin above
which only radiation backwards is possible. If the parameter
� and velocity Vin are not small, then the kink dynamics even
in the initial stage becomes highly nonstationary and dissi-
pative, as in discrete systems.13 In actuality, because of the
presence of an internal mode in the spectrum of excitations
of the kink, an important channel of energy loss by the soli-
ton is the process of formation of a wobbling kink. It begins
with the excitation of an internal mode, which rapidly trans-
forms into a self-localized oscillation, the so-called
breather,3 which is a dynamical bound state of two kinks
with opposite topological charges. For the usual SG equation
such an oscillating kink can be found explicitly.20 Here the
breather, localized at the kink, has the symmetry of an inter-
nal mode. Because of the dispersion, its velocity rapidly be-
comes less than the velocity of the kink, and the breather is
found on the wake of the topological soliton.

We made further analytical and numerical studies of
kink interaction processes and the conditions for the forma-
tion of bound soliton complexes in relation to the initial ve-
locity of the kinks, the distance between them, and the value
of the dispersion parameter. It turned out that for describing
the process of coupling of the kinks and their interaction
with a low-amplitude breather mode, fb�	 , t�=a sin�
t−k�	
−	0�� /cosh���	−	0�� it is sufficient to use the following an-
satz:
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uwb�x,t� = 4 arctan�exp�	 + R�� + 4 arctan�exp�	 − R��

+ fb�	,t��1 − tanh 	� , �6�

in which 	= �x−Vt� / l, and the parameters V, l, R, a, �, 
, k,
and 	0 are assumed to be time-dependent functions. For R
=a=0, l= l0, and V=V0, expression �6� reduces to the exact
solution �4�. First, we were convinced from the numerical
calculations that the soliton complex �4�, moving steadily
with velocity V0, is stable against small perturbations. If we
set H=0 and use the solution �4� as the initial profile but
choose a small value for the velocity, then the soliton com-
plex dissociates in an explosive manner. However, the repul-
sive forces fall off quite rapidly with increasing initial veloc-
ity of the complex. When Vin approaches the velocity of
steady motion V0 from below, the two interacting kinks pass
through a stage of formation of “excited” states of the soliton
complex.7,10,11 However, such states are metastable, although
they have a rather large lifetime. We then studied the char-
acter of the interaction of rapidly moving kinks in relation to
the distance between their centers. It was found that at small
R�1 an attraction occurs, as a result of which a stable soli-
ton complex forms. This case is shown in Fig. 1 for �
=1 /12 and Vin=0.9. It is seen that the soliton complex is not
destroyed even after reflection from the boundary. With in-
creasing distance between kinks, attraction gives way to re-
pulsion, and, as a result, the complex decomposes into two
kinks. At moderate initial velocities Vin−V0�V0 /3 and �
�1 the soliton complex survives, throwing off excess energy
in the form of breather modes. In this case, however, there
exists yet another critical velocity, above which the complex
dissociates into two kinks. Such a decay of a “high-energy”
complex, with the formation of several breather modes, oc-
curs for �=1 and Vin=0.9, for example �Fig. 2�.

Finally, we have investigated the influence of driving
forces and dissipation on the dynamics of soliton complexes.
For this we took Eq. �2� for H=0 and added the terms j0

−ut to the right-hand side, where the first term corresponds
to the bias current in a Josephson junction, for example, and
 is the dissipation coefficient. The result of a numerical
modeling are presented in Fig. 3 for =0.1 and six sequen-
tial values of j0 from −0.1 to −0.35. It turns out that the

external influences under conditions of dissipation permit
stabilization not only of the soliton complex but also of its
“excited” states. For waves of stationary profile, the deriva-
tives ut and ux are proportional to each other, and both have
the form of closely spaced double peaks. These derivatives
are directly related to experimentally measurable quantities,
in particular, the voltage U�ut and magnetic field h�ux in
the case of a long Josephson junction, and in a crystal with
dislocations the derivative ux determines the elastic deforma-
tion of the medium. We note that the possibility in principle
of observing multi-soliton excitations in long Josephson
junctions was demonstrated quite some time ago.21

Thus the results obtained can be used for explanation
and description of new effects in the dynamics of topological
solitons in highly dispersive media—in particular, disloca-
tions in nonideal lattices, fluxons in Josephson junction sys-
tems, and magnetic domain walls in anisotropic magnets.

FIG. 1. Propagation of a stable soliton complex. Each curve labeled with a
number m corresponds to a time tm=20·m. The profile of the solution with
number m=7 corresponds to a complex that has reflected off the boundary.

FIG. 2. Decay of a soliton complex for �=1, Vin=0.9 and t1=500. The first
kink moves with a constant velocity V1=0.152. Behind the second kink are
breather modes. The inset shows the spatial modulation of the field between
kinks on an expanded scale.

FIG. 3. Propagation of stable soliton complexes with an internal structure
under the influence of external forces and in the presence of dissipation. The
coefficient =0.1 and the curves with numbers n=1, . . . ,6 corresponds to
j0=−0.05�1+n� and to the same instant of time t1=100.
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