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SENIOR PARTICIPANTS

Bratteli diagrams: structures, measures, orderings
Sergey Bezuglyi, Kharkiv, Ukraine

Bratteli diagrams are widely used in the theory of operator algebras and in
Cantor dynamics. Our goal is to give a survey of the most recent results about
invariant measures on Bratteli diagrams. In other words, this is equivalent to
the study of measures (finite and infinite) of an arbitrary homeomorphism of a
Cantor set.

The following topics are planned to discuss:

• the structure of simple and non-simple Bratteli diagrams;

• the tail equivalence relation R on the path space of a Bratteli diagrams and
existence of continuous dynamics on Bratteli diagrams;

• ergodic R-invariant measures and their supports;

• examples.

All necessary definitions will be given.

Subdiagrams and invariant measures of Bratteli
diagrams

Sergey Bezuglyi, Kharkiv, Ukraine
Olena Karpel, Kharkiv, Ukraine

Jan Kwiatkowski, Olsztyn, Poland

We study ergodic measures on the path space XB of a Bratteli diagram B in-
variant with respect to the tail equivalence relation E . Our aim is to characterize
those subdiagrams that support an ergodic finite invariant measure.

The interest and motivation for this work arise from the following result proved
by Bezuglyi, Kwiatkowski, Medynets and Solomyak (2013): for any ergodic
probability measure µ on a finite rank diagram B, there exists a subdiagram B
of B defined by a sequence of vertices W = (Wn), where Wn ⊂ Vn, such that
µ(X

(n)
w ) is bounded from zero for all w ∈ Wn and n. Here Vn is the set of all

vertices of B on level n and X
(n)
v is the set of all paths that go through the

vertex v ∈ Vn. It was also shown that µ can be obtained as an extension of an
ergodic measure on the subdiagram B, in other words, B supports µ.
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We look for analogous result in case of a general Bratteli diagram. Given a
subdiagram B of a Bratteli diagram B, consider an ergodic probability measure ν
on XB. This measure can be naturally extended (by E-invariance) to a measure
ν̂ defined on the E-saturation X̂B of the path space XB. We give criteria and
sufficient conditions for the finiteness of the extended measure.

Suppose now that a probability measure µ is given on a diagram B. We
answer the question when the path space of the subdiagram B has positive
measure.

Theorem 1 Let B be a simple Bratteli diagram and µ a probability ergodic
measure on XB. Suppose B is a vertex subdiagram of B defined by a sequence
(Wn) of vertices subsets. Then µ(XB) = 0 if and only if for every ε > 0 there
exists n = n(ε) such that for every w ∈ Wn

h
(n)

w

h
(n)
w

< ε,

where h(n)w is a height of the tower X(n)
w and h

(n)

w is the height of the correspond-
ing tower in the subdiagram.

Corollary 1 Let B, µ, B be as in Theorem above. Suppose µ(XB) = 0. Then
for any probability invariant µ on B we have µ̂(X̂B) = ∞.

Combinatorial models for spaces of cubic polynomials
Alexander Blokh, Birmingham, AL, USA and Bonn, Germany

Lex Oversteegen, Birmingham, AL, USA
Vladlen Timorin, Moscow, Russia

Ross Ptacek, Moscow, Russia

To construct a model for a connectedness locus of polynomials of degree
d ≥ 3 (cf with Thurston’s model of the Mandelbrot set), we define linked
geolaminations L1 and L2. An accordion is defined as the union of a leaf ℓ of L1

and leaves of L2 crossing ℓ (or vice versa). We show that any accordion behaves
like a gap of one lamination and prove that the maximal perfect (without isolated
leaves) sublaminations of L1 and L2 coincide.

In the cubic case let D3 ⊂ M3 be the set of all dendritic (with only repelling
cycles) polynomials. Let MD3 be the space of all marked polynomials (P, c, w),
where P ∈ D3 and c, w are critical points of P (perhaps, c = w). Let c∗ be the
co-critical point of c (i.e., P (c∗) = P (c) and, if possible, c∗ ̸= c). By Kiwi, to
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P ∈ D3 one associates its lamination ∼P so that each x ∈ J(P ) corresponds
to a convex polygon Gx with vertices in S. We relate to (P, c, w) ∈ MD3 its
mixed tag Tag(P, c, w) = Gc∗ × GP (w) and show that mixed tags of distinct
marked polynomials from MD3 are disjoint or coincide. Let Tag(MD3)

+ =∪
D3

Tag(P, c, w). The sets Tag(P, c, w) partition Tag(MD3)
+ and generate

the corresponding quotient space MT3 of Tag(MD3)
+. We prove that Tag :

MD3 → MT3 is continuous so that MT3 serves as a model space for MD3.

Inessentiality of PSC-manifolds
Dmitry Bolotov, Kharkiv, Ukraine

We represent the our join work with A. Dranishnikov (Florida, USA).
The following definition was introduced by M.Gromov in [1].

Definition 1 An n-manifoldM with the fundamental group π is called essential
if its classifying map u :M → Bπ cannot be deformed into the (n−1)-skeleton
Bπ(n−1) and it is called inessential if u can be deformed into Bπ(n−1). M is
called rationally inessential if the immage u∗ : Hn(M ;Q) → Hn(Bπ;Q) is zero.

We say that group π satisfies Rosenberg–Stolz conditions (RS-conditions) if

1. The homomorphism kon(Bπ) → KOn(Bπ) induced by the transformation
of spectra ko→ KO is a monomorphism;

2. The Strong Novikov Conjecture holds for π: The analytic assembly map
α : KO(Bπ) → KO(C∗(π)) is a monomorphism, where C∗(π) is reduced
C∗ - algebra of π.

We prove the following theorem.

Theorem 1 Let M be a closed orientable n-manifold, n ≥ 5, with positive
scalar curvature (PSC-manifold) whose fundamental group π is an RS - group.
Then M is rationally inessential.

Remark 1 The case of spin-manifolds was proved us in [2]

Remark 2 The Theorem above allows us to draw important conclusions about
macroscopic dimension of PSC-manifolds with special fundamental groups.

[1] M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures,Functional
analysis on the eve of the 21st century. Vol. II, Birkhauser, Boston, MA, 1996.

[2] D. Bolotov and A. Dranishnikov, On Gromov’s scalar curvature conjecture, Proc. AMS 138 (2010), N
3,4, 1517–1524
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Inverse isoperimetric inequality
Alexander Borisenko, Sumy, Ukraine

The classical isoperimetric property of a circle in the two-dimensional space
of constant curvature equal to c claims that among all simple closed curves of a
fixed length, the maximal area is enclosed only by a circle.

At the same time, there exist simple closed curves of fixed perimeter that
bound domains whose areas are arbitrary close to zero.

It is true the following

Theorem 1 Let G be a domain homeomorphic to the disk in two-dimensional
Alexandrov space of the curvature ≥ c.

If specific rotation of boundary curve γ greater or equal λ > 0 and perimeter
γ is equal L than the area F of the domain G satisfies the inequality

1.

F ≥ L

2λ
− 1

λ2
sin

(
Lλ

2

)
, (1)

for c = 0;

2.

F ≥ 4

k2
arctan

(
λ√

λ2 + k2
tan

(√
λ2 + k2

4
L

))
− λ

k2
L, (2)

for c = k2;

3. (a)

F ≥ λ

k2
L− 4

k2
arctan

(
λ

λ2 − k2
tan

(√
λ2 − k2

4
L

))
, (3)

for c = −k2, λ > k;

(b)

F ≥ 1

k
L− 4

k2
arctan

(
k

4
L

)
, (4)

for c = −k2, λ = k;

(c)

F ≥ λ

k2
L− 4

k2
arctan

(
λ√

k2 − λ2
tanh

(√
k2 − λ2

4
L

))
, (5)

for c = −k2, λ < k.
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In inequalities (1-5) the equality case holds only for λ-lunes on two-
dimensional spaces of constant curvature c.

Dynamics in 3D viscous primitive equations
Igor Chueshov, Kharkiv, Ukraine

We deal with the 3D viscous primitive equations which arise in the study
of oceanic motions. We concentrate on the so-called Ladyzhenskaya squeezing
property and its consequences related to long-time dynamics in this system.

Heisenberg Odometers
Alexandre Danilenko, Kharkiv, Ukraine

Mariusz Lemańczyk, Torun, Poland

Let H3(R) denote the 3-dimensional real Heisenberg group. Given a family
of lattices Γ1 ⊃ Γ2 ⊃ · · · in it, let T stand for the associated uniquely ergodic
H3(R)-odometer, i.e. the inverse limit of the H3(R)-actions by rotations on
the homogeneous spaces H3(R)/Γj, j ∈ N. The decomposition of the under-
lying Koopman unitary representation of H3(R) into a countable direct sum of
irreducible components is explicitly described. The ergodic 2-fold self-joinings
of T are found. It is shown that in general, the H3(R)-odometers are neither
isospectral nor spectrally determined.

Long-time asymptotics for the Toda shock problem
Iryna Egorova, Kharkiv, Ukraine

We derive the long-time asymptotics for the Toda shock problem using the
nonlinear steepest descent analysis for oscillatory Riemann–Hilbert factorization
problems. We show that the half plane of space/time variables splits into five
main regions: The two regions far outside where the solution is close to free
backgrounds. The middle region, where the solution can be asymptotically de-
scribed by a two band solution, and two regions separating them, where the
solution is asymptotically given by a slowly modulated two band solution. In
particular, the form of this solution in the separating regions verifies a conjecture
by Venakides, Deift, and Oba [1].

The work is done in collaboration with J. Michor and G. Teschl.

[1] S. Venakides, P. Deift, and R. Oba, The Toda shock problem, Comm. Pure Appl. Math. 44 (1991),
no.8-9, 1171–1242.
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On transformation operators in controllability
problems for the wave equations with variable

coefficients on a half-axis controlled by the Dirichlet
boundary condition

Larissa Fardigola, Kharkiv, Ukraine

In this paper necessary and sufficient conditions of L∞-controllability and
approximate L∞-controllability are obtained for the control system

wtt =
1

ρ
(kwx) x + γw, x > 0, t ∈ (0, T ), (1)

w(0, t) = u(t), t ∈ (0, T ). (2)

Here ρ, k, and γ are given functions of x on [0,+∞); u ∈ L∞(0, T ) is a control;
T > 0 is a constant. These problems are considered in special modified spaces
of the Sobolev type that are introduced and studied in the paper. The growth
of distributions from these spaces is associated with the equation data ρ and
k. Using some transformation operator introduced and studied in the paper, we
see that control system (1), (2) replicates the controllability properties of the
auxiliary system

ztt = zxx − q2z, x > 0, t ∈ (0, T ) (3)
z(0, t) = v(t), t ∈ (0, T ), (4)

and vise versa. Here q ≥ 0 is a constant and v ∈ L∞(0, T ) is a control.
Control problem (3), (4) has been investigated in [1]. Necessary and sufficient
conditions of controllability for control system (1), (2) are obtained from the
ones for auxiliary control system (3), (4) (see [2]).
[1] L.V. Fardigola, Controllability problems for the 1-d wave equation on a half-axis with the Dirichlet

boundary control, ESAIM: Control, Optim. Calc. Var., 18 (2012), 748–773.
[2] L.V. Fardigola, Transformation operators in controllability problems for the wave equations with variable

coefficients on a half-axis controlled by the Dirichlet boundary condition, MCRF, submitted.

Long-time behavior of a one-dimensional nonlinear
system of thermoelasticity.
Tamara Fastovska, Kharkiv, Ukraine

We study oscillations of beams consisting of a special class of nonlinear ther-
moelastic materials (for details, see e.g. [1]). The beam, then in equilibrium,
occupies the interval Ω = (0, l).
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The system has the form

αutt + κuxxxx − fx(ux)− θx = 0, (1)
γθt − βθxx − θutx = 0, t > 0, x ∈ Ω (2)

and is supplemented with boundary conditions

u(0, t) = 0, ux(0, t) = 0, θx(0, t) = 0,
u(l, t) = 0, ux(l, t) = 0, θx(l, t) = 0.

(3)

and corresponding initial conditions, α, κ, γ, β are positive constants. The vari-
able u(x, t) stands for the vertical displacement while θ(t, x) denotes the differ-
ence between the absolute temperature and its mean value.

The relevant result is recorded below.

Theorem 1 Let the nonlinearity satisfies the conditions

F (v) ≥ −C, F (v) =

v∫
0

f(ξ)dξ,

|f ′′(v)| ≤ C(1 + |v|p), v ∈ R, 0 ≤ p <∞
Then the dynamical system generated by (1)-(3) has a unique weak solution in
the space

H = H2
0(Ω)× L2(Ω)× L2(Ω). (4)

The dynamical system generated by (1)-(3) possesses a compact global attractor
whose fractal dimension is finite.

[1] William J. Hrusa and Salim A. Messaoudi,On formation of singularities in one-dimensional nonlinear
thermoelasticity, Arch. Rat. Mech. Anal. 111 (1990), 135–151.

On the Skitovich–Darmois theorem for the group of
p-adic numbers

Gennadiy Feldman, Kharkiv, Ukraine

Let p be a prime number. We need some properties of the group of p-
adic numbers Ωp. As a set Ωp coincides with the set of sequences of integers
of the form x = (. . . , x−n, x−n+1, . . . , x−1, x0, x1, . . . , xn, . . . ), where xn ∈
{0, 1, . . . , p− 1}, such that xn = 0 for n < n0, where the number n0 depends

on x. Correspond to each element x ∈ Ωp the series
∞∑

k=−∞
xkp

k. Addition and
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multiplication of series are defined in a natural way and define the operations of
addition and multiplication in Ωp. With respect to these operations Ωp is a field.
Denote by ∆p a subgroup of Ωp consisting of x ∈ Ωp such that xn = 0 for n < 0.
Elements of the group ∆p we write in the form x = (x0, x1, . . . , xn, . . . ). The
family of subgroups {pm∆p}∞m=−∞ can be considered as an open basis at zero
of the group Ωp and defines a topology on Ωp. Each topological automorphism
α ∈ Aut(Ωp) is the multiplication by an element xα ∈ Ωp, xα ̸= 0, i.e. αg =
xαg, g ∈ Ωp. We will identify the automorphism α with the corresponding
element xα, i.e. when we write αg, we will suppose that α ∈ Ωp. Denote by
∆0
p the subset of ∆p, consisting of all invertible elements of ∆p, ∆0

p = {x =
(x0, x1, . . . , xn, . . . ) ∈ ∆p : x0 ̸= 0}. Each element g ∈ Ωp is represented in
the form g = pkc, where k is an integer, and c ∈ ∆0

p. Denote by I(Ωp) the set
of shifts of the Haar distributions mK of the compact subgroups K of Ωp.

Theorem 1 Let α ∈ Aut(Ωp), α = pkc, c ∈ ∆0
p. Then the following state-

ments hold.
1. Assume that either k = 0 or |k| = 1. Let ξ1 and ξ2 be independent

random variables with values in Ωp and distributions µ1 and µ2. Assume that
the linear forms L1 = ξ1 + ξ2 and L2 = ξ1 + αξ2 are independent. Then

1(i) If k = 0, then µ1, µ2 ∈ I(X); moreover if c = (1, c1, . . . ), then µ1 and
µ2 are degenerate distributions;

1(ii) If |k| = 1, then either µ1 ∈ I(Ωp) or µ2 ∈ I(Ωp).
2. If |k| ≥ 2, then there exist independent random variables ξ1 and ξ2 with

values in Ωp and distributions µ1 and µ2 such that the linear forms L1 = ξ1+ ξ2
and L2 = ξ1 + αξ2 are independent whereas µ1, µ2 /∈ I(Ωp).

This theorem is an analogue for the group Ωp of the well-known Skitovich–
Darmois theorem, where a Gaussian distribution on the real line is characterized
by the independence of two linear forms.

Schoenberg matrices and Riesz sequences of
translates in L2(Rn)

Leonid Golinskii, Kharkiv, Ukraine

Given a function f on the positive half-line R+ and a sequence (finite or
infinite) of points X = {xk}ωk=1 in Rn, we define and study matrices SX(f) =
∥f(|xi − xj|)∥ωi,j=1 called Schoenberg’s matrices. We are primarily interested
in those matrices which generate bounded and invertible linear operators SX(f)
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on ℓ2(N). We provide conditions on X and f for the latter to hold. If f
is an ℓ2-positive definite function, such conditions are given in terms of the
Schoenberg measure σ(f). Examples of Schoenberg’s operators with various
spectral properties are presented.

We also approach Schoenberg’s matrices from the viewpoint of harmonic
analysis on Rn, wherein the notion of the strong X-positive definiteness plays
a key role. In particular, we prove that each radial ℓ2-positive definite function
is strongly X-positive definite whenever X is a separated set. We implement
a “grammization” procedure for certain positive definite Schoenberg’s matrices.
This leads to Riesz–Fischer and Riesz sequences (Riesz bases in their linear span)
of the form FX(f) = {f(x− xj)}xj∈X for certain radial functions f ∈ L2(Rn).
[1] I. Schoenberg, Metric spaces and completely monotone functions, Ann. Math. 39 (1938), 811–841.
[2] M.M. Malamud, K. Schmüdgen, Spectral theory of Schrödinger operators with infinitely many point

interactions and radial positive definite functions, J. Funct. Theory 263 (2012), 3144–3194.

Spectral problems in a domain with “trap”-like
geometry of the boundary

Andrii Khrabustovskyi, Karlsruhe, Germany

It is well known that under smooth perturbation of a domain, the eigenvalues
of the Neumann Laplacian vary continuously. If the perturbation is only C0,
then, in general, this is not true. The following example demonstrating this was
considered in the classical book [1]. Let ε > 0 be a small parameter. Let Ωε be
a domain consisting of a fixed domain Ω and a small domain (in what follows we
will call such small domains as “traps”), which is a union a small square Bε with
a side length bε and a thin rectangle T ε of the width dε and height hε. Here
dε = ε4, hε = bε = ε. The domain Ωε can be viewed as a C0 perturbation of Ω.
It was shown in [1] that the first principal eigenvalue of the Neumann Laplacian
−∆Ωε in Ωε goes to zero as ε → 0, although the first principal eigenvalue of
the Neumann Laplacian in Ω is positive.

In the present talk we consider the domain Ωε obtained by attaching to Ω
many "traps". Their number is finite for a fixed ε and goes to ∞ as ε → 0.
The traps are attached along a flat part of ∂Ω (we denote it Γ). We consider
the operator

Aε = − 1

ρε
∆Ωε,

where the weight ρε(x) is positive and equal to 1 in Ω. Our goal is to study the
behaviour of its spectrum as ε→ 0.
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For a wide range of values of dε, bε, hε and ρε|Ωε\Ω we prove that the
spectrum of the operator Aε converges as ε → 0 to the spectrum of some
operator A acting either in L2(Ω) or in L2(Ω)⊕L2(Γ). The form of the operator
A depends on some relations between dε, bε, hε and ρε|Ωε\Ω. In particular, in
some cases A may have nonempty essential spectrum.

This is a joint work with Giuseppe Cardone (University of Sannio, Benevento,
Italy). The work is supported by DFG via GRK 1294.

[1] R. Courant, D. Hilbert, Methoden der mathematischen Physik, Springer, Berlin, 1931.

A model Riemann–Hilbert problem for unimodular
Baker–Akhiezer function
Vladimir Kotlyarov, Kharkiv, Ukraine

Let Ej and Êj (j = 1, 2, ..., n+1) be different complex numbers such that in-
tervals (E1, Ê1), (E2, Ê2), ......, (En+1, Ên+1) and (Ê1, E2), (Ê2, E3), ......, (Ên, En+1) are mu-
tually disjoint on the complex plane C. Let Σ be a peace-wise contour such
that Σ :=

n+1∪
j=1

(Ej , Êj)
∪ n∪

j=1
(Êj , Ej+1). The orientation on Σ is choosing from the E1

to Ên+1. Let X be hyperelliptic curve generated by Ej and Êj as the branching
points. Let f(z), g(z) be normilized Abelian integrals of the second kind with
poles at the marked points of X and prescribed principal parts.

Model Riemann–Hilbert problem.
Let M(z, x, t) be the 2× 2 matrix solution of the Riemann–Hilbert problem:

• M(z, x, t) is analytic in C \ Σ;

• non-tangential boundary values M±(z, x, t) is continuous on Σ with excep-
tion of the points Ej and Êj, where it has fourth root singularities and they
satisfy the jump condition:

M−(z, x, t) =M+(z, x, t)J(z, x, t), z ∈ Σ,

J(z, x, t) =

(
0 i
i 0

)
, z ∈ (Ej, Êj), j = 1, 2, ..., n+ 1;

=

(
ei(xB

f
j +tB

g
j+Bj) 0

0 e−i(xBf
j +tB

g
j+Bj)

)
, z ∈ (Êj, Ej+1),

where Bf
j , B

g
j are nonzero periods of f(z) and g(z), and Bj (j =

1, 2, ..., n) are arbitrary complex number.
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• M(z, x, t) = I +O(z−1) z → ∞.

Then unimodular Baker–Akhiezer function takes the form

Φ(z, x, t) = ei(xf0+tg0)σ3M(z, x, t)e−i(xf(z)+tg(z))σ3, σ3 =

(
1 0
0 −1

)
,

where f0, g0 are the constants defined by f(z) and g(z).
The matrix M(z, x, t) is expressed in an explicit form through the Riemann

theta functions. The matrix Φ(z, x, t) is a compatible solution of some over-
determined system of differential in x and t matrix equations. It generates a
quasi-periodic solution of the corresponding nonlinear equations.

A linear interpolation problem for vector polynomials
Mikhail Kudryavtsev, Kharkov, Ukraine

Luis Silva, Mexico, Mexico
Sergio Palafox, Mexico, Mexico

Let us denote by P the space of n-dimensional vector polynomials, viz.,

P := {p(z) = (P1(z), P2(z), . . . , Pn(z))
∗ ; Pk is a scalar polynomial} .

Consider the following interpolation problem. Given a collection of complex
numbers z1, . . . , zN , which are called interpolation nodes, and other collections of
complex numbers αk(1), . . . , αk(N), k = 1, . . . , n, such that

∑n
k=1 |αk(j)| > 0

for every j ∈ {1, 2, . . . , N}, find all the vector polynomials Pk, k = 1, . . . , n,
which satisfy

n∑
k=1

αk(j)Pk(zj) = 0 ∀j ∈ {1, 2, . . . , N} .

Definition 1 Let the function h : P → N ∪ {0,−∞} be defined by

h(p) :=

{
maxj∈{1,...,n} {n degPj(z) + j − 1} , p ̸= 0 ,

−∞, p = 0 .

The number h(p) is called the height of the vector polynomial p.

Theorem 1 There exist n vector-polynomials rj, j = 1, . . . , n, which we call
generators of the interpolation problem, such that

h(r1) ≤ n,

n∑
j=1

h(rj) = Nn+
n(n− 1)

2
,
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and any solution p of the interpolation problem can be uniquely represented in
the form

p =
n∑
j=1

Sjrj ,

where Sj is a scalar polynomial. Conversely, any vector polynomial of this form
with arbitrary polynomials Sj is a solution of the interpolation problem.

[1] M. Kudryavtsev, L. Silva, and S. Palafox, On a linear interpolation problem for n-dimensional vector
polynomials, submitted to Linear Algebra and Applications.

Complex methods in Gabor Analysis
Yurii Lyubarskii, Trondheim, Norway

Given a function g ∈ L2(R) and numbers a, b > 0 we consider the cor-
responding Gabor system G(g; a, b) = {e2ibntg(t − am)}m,n∈Z. Such systems
apear naturally in Signal Processing, Pseudo-Differential Operators and some
other areas. The Gabor Analysis studies expansions of arbitrary functions in
L2(R) in elements of G(g; a, b).

There are various methods for dealing with such expansions. We present
some techniques and results which are motivated by methods and techniques of
Complex Analysis.

Trace formulas for pairs of resolvent comparable
operators

Mark Malamud, Donetsk, Ukraine

Generalized shaddocks
Аnatoly Milka, Kharkiv, Ukraine
Vasyl Gorkavyy, Kharkiv, Ukraine
Dmitro Kalinin, Kharkiv, Ukraine

We will discuss a series of generalized shaddocks discovered earlier by A.D.
Milka. Every generalized shaddock P (n, β) is a closed symmetric non-convex
polyhedron with the following set of faces: two regular n-gonal bases, 2n regular
triangular faces and 2n “petals” congruent to a rhombus broken along a diagonal
of length L with dihedral angle β, all the edges have the length 1. The series
of generalized shaddocks includes a shaddock of A. Douady P (n, π2 ) [1] and a
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family of shaddocks {P (3, β)}β∈S1 studied by A.D. Milka in [2]. For any n > 3
there is also a continuous family of generalized shaddocks {S(n, β)}β∈S1.

It is proved that for any n ≥ 3 the family {S(n, β)}β∈S1 contains a unique
S(n, β0) with locally maximal value of L. Besides, it is shown that for any
n ≥ 3 the family {S(n, β)}β∈S1 contains a unique generalized shaddock, which
is non-rigid of first order, if the velocity vectors of corresponding infinitesimal
bendings are supposed to inherit the symmetry properties of S(n, β). This
non-rigid generalized shaddock turns out to coincide with S(n, β0). Finally,
for a sufficiently small deformation of S(n, β0) in the family {S(n, β)}β∈S1 we
construct an effective approximation by a continuous linear bending of S(n, β0).

It was suggested in [3], [4], that the shaddock of Douady is an example
of a model flexor, i.e. a theoretically non-flexible polyhedron whose physical
model admits essential continuous deformations without visible distortions of
material like physical models of theoretical flexors. A similar phenomenon turns
out to be observed for the generalized shaddocks S(n, β0). Like other known
examples of model flexors, the star-like pyramids of Alexandrov-Vladimirova, the
model flexibility of S(n, β0) may be explained apparently by the infinitesimal
non-rigidity as well as by the continuous linear bendings mentioned above.

[1] M. Berger, Geometry I, Springer, Berlin, 1987.
[2] A. Milka, Linear bendings of regular convex polyhedra, Math. physics, Analysis, Geometry 1 (1994),

116–130 (in Russian).
[3] A. Milka, Linear isometric deformations of polyhedra, ICM-98, Berlin, Short Communications, 1998.
[4] A. Milka, Linear bendings of convex polyhedra, Int. conf. on geometry in large, Cherkassy, 1995. Abstracts

of short communications, 61–62 (in Russian).

Random walks on discrete abelian groups
Margaryta Myronyuk, Kharkiv, Ukraine

Let (Ω,A, P ) be a probability space, X be a countable discrete abelian group,
µ be a distribution on X. A random walk on X generated by µ is a sequence

Sn = ξ1 + · · ·+ ξn, n = 1, 2, . . . ,

where ξj are independent identically distributed random variables with distribu-
tion µ defined on (Ω,A, P ) and with values in X.

The random walk on X is recurrent if

P{ω ∈ Ω : Sn(ω) = x for an infinite number of indices n ∈ N} = 1

for all x ∈ X.
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R. Dudley ([1]) proved that a countable discrete abelian group X has a
recurrent random walk iff X contains no subgroup isomorphic to Z3.

LetX be a second countable locally compact abelian group, Y be its character
group. Let (x, y) be the value of a character y ∈ Y at an element x ∈ X, let
mY be a Haar measure on Y . Let µ̂(y) =

∫
X(x, y)dµ(x) be the characteristic

function of a distribution µ on X. S. Kesten and F. Spitzer proved the following
criterion of recurrence of random walks ([2]): the random walk on a countable
discrete abelian group X generated by a distribution µ is recurrent iff∫

Y

Re
1

1− µ̂(y)
dmY = ∞.

We use this criterion to find necessary and sufficient conditions for the recurrence
of random walks on arbitrary subgroups of rational numbers Q not isomorphic
to Z.

Note that in [3] Nabil Freig and S.A. Molchanov obtained necessary and suf-
ficient conditions for the recurrence of random walks on the subgroup of rational
numbers Hp =

{
m
pn ,m, n ∈ Z

}
(p is fixed). We generalize and strengthen

results of [3]. Our proof is completely different from the one given in [3].

[1] R. Dudley, Random walks on abelian groups, Proc. Amer. Math. Soc., 13 (1962), 447–450.

[2] S. Kesten, F. Spitzer, Random walk on countably infinite abelian groups, Acta. Math., 114 (1965),
237–265.

[3] Nabil Freig, S.A. Molchanov, On random walks on Abelian groups with infinite number of generators,
Vestn. Mosk. Univ., Ser. I (1978), No. 5, 22–29 (in Russian).

Schur—Weyl duality for the unitary groups of
II1-factors

Nikolay Nessonov, Kharkiv, Ukraine

We obtain the analogue of Schur–Weyl duality for the unitary group of an
arbitrary II1-factor

Let M be a separable II1-factor , let U (M) be its unitary group and let tr
be a unique normalized normal trace on M . Denote by M′ commutant of M.
Assume that M acts on L2 (M, tr) by left multiplication: L(a)η = aη, where
a ∈ M, η ∈ L2 (M, tr). Then M′ coincides with the set of the operators that
act on L2 (M, tr) by right multiplication: R(a)η = ηa, where η ∈ L2 (M, tr),
a ∈ M. Let Sp be the symmetric group of the n symbols 1, 2, . . ., p. Take
u ∈ U(M) and define the operators L⊗p(u) and R⊗p(u) on L2 (M, tr)⊗p as
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follows

L⊗p(u) (x1 ⊗ x2 ⊗ · · · ⊗ xp) = ux1 ⊗ ux2 ⊗ · · · ⊗ uxp,

R⊗p(u) (x1 ⊗ x2 ⊗ · · · ⊗ xp) = x1u
∗ ⊗ x2u

∗ ⊗ · · · ⊗ xpu
∗,

where x1, x2, . . . , xp ∈ L2 (M, tr) .

Obviously the operators L⊗p(u) and R⊗p(u), where u ∈ U(M), form the unitary
representations of the group U(M). Also, we define the representation Pp of
Sp that acts on L2 (M, tr)⊗p by

Pp(s) (x1 ⊗ x2 ⊗ · · · ⊗ xp) = xs−1(1) ⊗ xs−1(2) ⊗ · · · ⊗ xs−1(p), s ∈ Sp. (1)

Denote by AutM the automorphism group of factor M. Let θsp be the
automorphism of factor M⊗p that acts as follows

θsp(a) = Pp(s)aPp(s
−1), where s ∈ Sp, a ∈ M⊗p ∪M′⊗p. (2)

Let A be the set of the operators on Hilbert space H, let NA be the smallest
von Neumann algebra containing A, and let A′ be a commutant of A. By von
Neumann’s bicommutant theorem NA = {A′}′ = A′′.

Set (M⊗p)Sp =
{
a ∈ M⊗p : θsp(a) = a for all s ∈ Sp

}
.

The irreducible representations of Sp are indexed by the partitions of p (λ ⊢
p). Let χλ be the character of the corresponding irreducible representation T λ.
If dimλ is the dimension of T λ, then operator P λ

p = dimλ
p!

∑
s∈S

χλ(s)Pp(s) is the

orthogonal projection on L2 (M, tr)⊗p. Denote by Υp the set of all partitions
of p. The following statement is an analogue of the Schur-Weil duality.

Theorem 1 Fix the nonnegative integer numbers p and q. Let λ and
µ be the partitions from Υp and Υq, respectively, and let Πλµ be the
restriction of representation L⊗p ⊗ R⊗q to the subspace Hλµ = P λ

p ⊗
P µ
q

(
L2 (M, tr)⊗p ⊗ L2 (M, tr)⊗q

)
. The following properties are true.

• (1) {L⊗p ⊗R⊗q (U(M))}′′ = (M⊗p)Sp ⊗ (M′⊗q)Sq . In particular, the
algebra (M⊗p)Sp ⊗ (M′⊗q)Sq is the finite factor.

• (2) For any λ and µ the representation Πλµ is quasi-equivalent to L⊗p ⊗
R⊗q.

• (3) Let γ ⊢ p and δ ⊢ q. The representations Πλµ and Πγδ are unitary
equivalent if and only if dimλ · dimµ = dim γ · dim δ.
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[1] T. Enomoto, M. Izumi, Indecomposable characters on infinite dimensional groops associated with operator
algebras, arXiv:1308.6329v1 [math.OA] 28 Aug 2013.

[2] N. I. Nessonov, Schur–Weyl duality for the unitary groups of II1-factors, arXiv:1312.0824 [math.RT] 13
Dec 2013.

Annihilating random walks as extended Pfaffian point
process

Mihail Poplavskyi, Coventry, United Kingdom

In this talk we discuss two well-known stochastic models, connections between
them and the eigenvalue dynamics for real Ginibre ensemble.

The first model is Glauber dynamics for 1D Ising model. We assume that
evolution of spins σt (x) = ±1 with x ∈ Z is given by flipping rates

ωt (x) = 1/2
(
1− 1/2σt (x)

(
γ(−) (x) σt (x− 1) + γ(+) (x) σt (x+ 1)

))
,

where
∣∣γ(−) (x)

∣∣+ ∣∣γ(+) (x)
∣∣ ≤ 2,∀x ∈ Z. We also consider domain walls which

separate +1 and −1 regions and defined by

ηt (x+ 1/2) = (1− σt (x)σt (x+ 1)) /2.

They form a point process on the dual lattice Z + 1/2 that is the main object
of our study. Using properties of the Glauber dynamics we prove

Theorem 1 Fix K,m ∈ Z+, times 0 < t1 < . . . tK < t, particle positions
x
(k)
1 < . . . < x

(k)
nk for 1 ≤ k ≤ K, and even number of spin positions y1 ≤ . . . ≤

y2m. Then under assumption of deterministic initial spin distribution the mixed
particle-spin correlations satisfy

E

[
K∏
k=1

nk∏
i=1

ηtk

(
x
(k)
i + 1/2

) 2m∏
j=1

σt (yj)

]
= Pf (K) ,

where kernel K is given in terms of a difference equation solution.

In the case of γ(−) (x) = γ(+) (x) ≡ 1 one can see that domain walls behave
as Annihilating Random Walks (ARW). We present explicit kernels for different
initial spin distributions. For independent σ0 (x) = 2B1/2 − 1 we show the
convergence of the kernel to one, obtained in [1] for Annihilating Brownian
Motions. One-sided initial distribution is also studied and connection to the
eigenvalue dynamics of Ginibre ensemble is discussed. The talk is based on a
joint work with Barnaby Garrod [2].
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[1] R.Tribe, S.K. Yip, and O.Zaboronski, One dimensional Annihilating and Coalescing particle systems as
Extended Pfaffian Process, Electron. Commun. Probab., 17, 40, 1–7.

[2] B. Garrod and M. Poplavskyi, Annihilating Random Walks as Extended Pfaffian Point Process, in prep.

Critical points of the Ginzburg–Landau functional with
semi-stiff boundary conditions

Vladimir Rybalko, Kharkiv, Ukraine

We consider a variational problem for Ginzburg–Landau functional when the
unknown complex-valued function u (order parameter) is constrained to take
boundary values on the unit circle. This constraint results in the so-called semi-
stiff boundary conditions for critical points: the Dirichlet condition |u| = 1 and
the Neumann condition for phase. To find a nontrivial solutions one can prescribe
winding numbers on connected components on the boundary, but this might lead
to a noncompact variational problem. The corresponding existence/nonexistence
results obtained in the last decade will be discussed.

TBA
Maria Shcherbina, Kharkiv, Ukraine

Universality of the local regime for the block band
matrices with a finite number of blocks

Tatyana Shcherbina, St. Petersburg, Russia

Set Λ = [1,m]d ∩Zd and consider Hermitian matrices HN , N = |Λ|W with
elements Hjk,αβ, where j, k ∈ Λ (they parameterize the position of the block)
and α, β = 1, . . . ,W (they parameterize the entries inside the block). The
entries Hjk,αβ are random Gaussian variables with mean zero such that

⟨Hj1k1,α1β1Hj2k2,α2β2⟩ = δj1k2δj2k1δα1β2δβ1α2
Jj1k1. (1)

Here J = 1/W +α∆/W, α < 1/4d, where ∆ is the discrete Laplacian on Λ.
Such models were first introduced and studied by Wegner and can be considered
as one of the possible realizations of the Gaussian random band matrices (RBM).

There is a physical conjecture (see e.g. [1]), which states that for 1D RBM
there is a crossover: for W ≫

√
N the local behavior of the eigenvalues is

the same as for GUE (delocalized states), and for W ≪
√
N we get another

behavior, which determines by the Poisson statistics (localized states).
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The first part of this conjecture for the second mixed moment of the charac-
teristic polynomials was proved in [2] using the supersymmetry approach (SUSY).
The approach is widely used in physics and is potentially very powerful but the
rigorous control of the integral representations, which can be obtained by this
method, is difficult and so far it has been performed only for the density of
states, but not for the higher correlation functions. From the SUSY point of
view characteristic polynomials correspond to the so-called fermionic sector of
the SUSY full model, which describes the higher correlation functions. Here we
present the rigorous SUSY result about the second correlation function of block
RBM (i.e. about the SUSY full model) although with finite number of blocks:

Theorem 1 Let |Λ| be fixed and R2 be the second correlation function of (1),
and ρ(λ0) = (2π)−1

√
4− λ20. Then for any |λ0| <

√
2 and ξ1, ξ2 ∈ [−M,M ]

we have, as W → ∞:

(Nρ(λ0))
−2R2

(
λ0 +

ξ1
ρ(λ0)N

, λ0 +
ξ2

ρ(λ0)N

)
w−→ 1− sin2(π(ξ1 − ξ2))

π2(ξ1 − ξ2)2
.

[1] Y.V. Fyodorov, A,D. Mirlin, Scaling properties of localization in random band matrices: a σ-model
approach, Phys. Rev. Lett., 67 (1991), 2405–2409.

[2] T. Shcherbina, On the second mixed moment of the characteristic polynomials of the 1D band matrices,
Commun. Math. Phys., 328 (2014), 45–82.

The Ostrovsky–Vakhnenko equation by a
Riemann–Hilbert approach

Dmitry Shepelsky, Kharkiv, Ukraine

We present an inverse scattering transform approach for the equation

utxx − 3ux + 3uxuxx + uuxxx = 0. (1)

This equation can be viewed as the short wave model for the Degasperis–Procesi
equation [1], which is a model of wave propagation in shallow water. On the
other hand, it arises (and is known as the “Vakhnenko equation”) in the context
of propagation of high-frequency waves in a relaxing medium [2]. Yet another
domain where it arises is the study of weakly nonlinear surface and internal waves
in a rotating ocean influenced by Earth rotation [3], where it is known as the
“reduced Ostrovsky equation” or the “Rotation-Modified KdV equation”.

Our approach is based on using the Lax pair representation of (1), which al-
lows formulating an associated Riemann–Hilbert problem giving a representation
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for the classical (smooth) solution of the Cauchy problem for the Ostrovsky–
Vakhnenko equation in terms of a solution to this problem, to get the principal
term of its long time asymptotics, and also to describe loop (generalized, multi-
valued) soliton solutions. A specific feature of the Lax pair equations for (1) is
that they are 3× 3 matrix ODEs.

[1] A. Degasperis and M.Procesi, Asymptotic integrability, Symmetry and perturbation theory, World Sci.
Publ., River Edge, NJ, 1998, 23–37.

[2] V.O. Vakhnenko, The existence of loop-like solutions of a model evolution equation, Ukr. Journ. Phys.,
42 (1997), 104–110.

[3] L.A. Ostrovsky, Nonlinear internal waves in a rotating ocean, Oceanology 18, (1978), no. 2, 181–191.

Generic symmetries on the Laurent extension of
quantum plane

Sergey Sinel’shchikov, Kharkiv, Ukraine

The standard quantum plane is a unital algebra with the two generators
x, y and a single relation yx = qxy. Our subject is the Laurent extension
Cq

[
x±1, y±1

]
of this algebra, which is derived by letting the generators x, y

to be invertible. The problem we consider is that of describing the Uq(sl2)-
symmetries (in other terminology, the structures of Uq(sl2)-module algebra [1])
on Cq

[
x±1, y±1

]
. Here Uq(sl2) is the quantum universal enveloping algebra of

sl2, defined by its generators k, k−1, e, f, together with the well known relations
[1]. By now there exists a complete classification of Uq(sl2)-symmetries on
the standard quantum plane [2]. It turns out that Cq

[
x±1, y±1

]
is much more

symmetric.

Theorem 1 There exists a two-parameter (α, β ∈ (C∗)2) family of Uq(sl2)-
symmetries of Cq[x

±1, y±1], in which the action of the Cartan generator k on
monomials does not reduce to multiplying by constants as in [2]:

π(k)x = α−1x−1 π(k)y = β−1y−1

π(e)x = 0 π(e)y = 0

π(f)x = 0 π(f)y = 0.

This is a complete list of symmetries with the above property. All these symme-
tries are isomorphic, in particular, to that with α = β = 1.

Theorem 2 Let α, β ∈ (C∗)2 be such that αuβv = q2 for some u, v ∈ Z
and αm ̸= βn for non-zero integers m, n. Then there exists a one-parameter
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(a ∈ C∗) family of generic Uq(sl2)-symmetries of Cq[x
±1, y±1]:

π(k)x = αx π(k)y = βy

π(e)x = −a 1− αqv

(1− q2)2
xu+1yv π(e)y = −a qu − β

(1− q2)2
xuyv+1

π(f)x =
quv+3(α−1 − q−v)

a
x−u+1y−v π(f)y =

quv+3(β−1q−u − 1)

a
x−uy−v+1

[1] C. Kassel, Quantum Groups, Springer–Verlag, New York, 1995.
[2] S. Duplij and S. Sinel’shchikov, Classification of Uq(sl2)-module algebra structures on the quantum plane,

J. Math. Phys., Anal., and Geom., 6 (2010), No. 4, 406–430.

TBA
Mikhail Sodin, Tel-Aviv, Israel

On the fluctuations of entries of deformed unitary
invariant ensembles

Vladimir Vasilchuk, Kharkiv, Ukraine

We consider first the additive ensemble of n × n random matrices Hn =
An + U ∗

nBnUn, where An and Bn are Hermitian (real symmetric), having the
limiting Normalized Counting Measure of eigenvalues, and Un is unitary, uni-
formly distributed over U(n). We find the leading term of asymptotic expansion
for the covariance of elements of resolvent of Hn and establish the Central Limit
Theorem for elements of sufficiently smooth statistic function of Hn as n→ ∞.
Then analogously we study the multiplicative ensemble Wn = SnU

∗
nTnUn.

Eigenvalue distribution of large weighted bipartite
random graphs

Valentin Vengerovsky, Kharkiv, Ukraine

We study eigenvalue distribution of the weighted adjacency matrix A(N,p,α)

of random bipartite graphs Γ = ΓN,p,α. We assume that the graphs have N
vertices, the ratio of parts is α

1−α and the average number of edges attached to
one vertex is α · p or (1 − α) · p. To each edge of the graph eij we assign a
weight given by a random variable aij.

The weak convergence in probability of normalized eigenvalue counting mea-
sures is proved. We derive closed system of equations that uniquely determine
the limiting measure.



June 16-20, 2014, Kharkiv, Ukraine 27

Constant slope hypersurfaces in the Euclidean space
Alexander Yampolsky, Kharkiv, Ukraine

Let X be a unit vector field on the Riemannian manifold (Mn+1, g). We say
that F n is a constant angle hypersurface if g(X,n) = cos θ = const, where n
is a unit normal vector field on F n. If Mn+1 is Euclidean and X is a constant
vector field, then the constant angle surface generalizes the concept of helix.
If X is a radial vector field on En+1 \ {0}, then the constant angle surface
generalizes the concept of logarithmic spiral. In the latter case the hypersurface
is called constant slope hypersurface. M. Munteanu [1] described all constant
slope hypersurfaces in E3. He proved particularly that in general case when
θ ∈

(
0, π2
)

the position vector of a surface is of the form

r⃗(u, v) = eu tan θ sin θ
(
cosuf⃗(v) + sinuf⃗(v)× f⃗ ′(v)

)
,

where f(v) is a unit speed curve on the unit sphere S2 centered at the origin.
We generalize the result of Munteanu and give local description of constant

slope hypersurfaces in the following way.

Theorem 1 Let F n ⊂ En+1 \ {0} be constant slope regular hypersurface with
θ ∈

(
0, π2
)
. Then its position vector is of the form

r⃗(u, v) = eu tan θ sin θ
(
cosua⃗(v) + sin u⃗b(v)

)
,

where a⃗ : Dn(v1, . . . , vn) → Sn+1 is a local parameterization of a hypersurface
in the unit sphere Sn+1 centered at the origin and b⃗ is a field of unit normals of
the latter hypersurface.

The constant slope hypersurfaces have a nice geometrical description.

Theorem 2 Let r⃗ = |r⃗|(cos θn⃗ + sin θe⃗1) be a position vector of constant
slope hypersurface F n ⊂ En+1 \ {0} with θ ∈

(
0, π2
)
. Then

• e⃗1 is a principal direction on F n;

• the integral trajectories of e⃗1 are geodesic lines on F n;

• the distribution e⃗⊥1 is integrable on F n and the integral submanifolds are
sections of the hypersurface by one-parametric family of spheres centered
at the origin.

[1] M. Munteanu, From golden spirals to constant slope surfaces, arXiv:0903.1348v1 [math.DG].
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Inverse spectral problem for operators with non-local
potentials

Vladimir Zolotarev, Kharkiv, Ukraine

Operator which is a finite-dimensional perturbation of the operator of second
derivative with self-adjoint boundary conditions is being studied. Description of
the spectrum of such operator is given and the inverse problem of the recovery
of parameters of perturbation by the spectral data is being solved.
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YOUNG PARTICIPANTS

On the second correlation function of characteristic
polynomials of sparse hermitian random matrices

Ievgenii Afanasiev, Kharkiv, Ukraine

We consider the asymptotic behavior of the correlation function of the product
of two characteristic polynomials of sparse hermitian n× n random matrices

Mn = (djkwjk)
n
j,k=1

where

djk = p−1/2

{
1 with probability p

n ;

0 with probability 1− p
n

and ℜwjk, ℑwjk are i.i.d. Gaussian random variables with zero mean such that

2E{|ℜwjk|2} = 2E{|ℑwjk|2} = E{|wll|2} = 1, j ̸= k.

Let F (Z) = E{det(Mn − z1) det(Mn − z2)}, Z = (z1, z2) ∈ R2.

The main result is

Theorem 1 Let an =
√

2(n−p)
pn . Then for z20 < 4− 4a2n we have

F (Z0 +X/n) = C1n exp{n(z20 + a2n − 2)/2 + z0(x1 + x2)/2}

× sin((x1 − x2)
√
4− 4a2n − z20/2)

(x1 − x2)
(1 + o(1)), n→ ∞.

In the case of z20 > max{4− 4a2n, 0} we have

F (Z0 +X/n) = C2 exp {nA/2 + αz0(x1 + x2)}
x1 + x2
x1 − x2

× α2

(2α− 1)3/2(2− α(1− α)(3− 2α)z20)
1/2

(1 + o(1)), n→ ∞.

Here Z0 = (z0, z0), X = (x1, x2); z0, x1, x2 ∈ R,

A = 2(1− α)z20 +

(
1− α

α

)2

a2n − 2 + 2 ln
α

1− α
,

α ∈ (1/2, 1) such that

α(1− α)z20 +

(
1− α

α

)2

a2n = 1,

and C1, C2 are some absolute constants.
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Regularized integrals of motion of the KdV equation
in a class of non-decreasing functions

Kyrylo Andreiev, Kharkiv, Ukraine

Synthesis problem for systems with power nonlinearity
Maxim Bebiya, Kharkiv, Ukraine

This work is devoted to a solution of the synthesis problem for nonlinear
system 

ẋ1 = u, |u| ≤ 1,
ẋi = xi−1 + fi−1(x1, . . . , xn), i = 2, . . . , n− 1,

ẋn = x2k+1
n−1 + fn−1(x1, . . . , xn),

(1)

which uncontrollable with respect to the first approximation. Using the control-
lability function method [1], we construct a positional control u = u(x) of the
form

u(x) =
1

θm(x)
(a,D(θ(x))x) + an+1

x2k+1
n−1

θm−1(x)
, (2)

where m = (2k+1)n−2k, D(θ) = diag
(
θm−1, . . . , θm−n+1, 1

)
is (n×n)-

matrix, a = (a1, . . . , an)
∗ ∈ Rn, an+1 ∈ R, and θ(x) is the unique positive

solution of the equation

2a0θ
2m = (FD(θ)x,D(θ)x), x ∈ Rn \ {0}, θ(0) = 0,

where F is a solution of singular Lyapunov inequality A∗F + FA ≤ 0 [2],

A =


a1 a2 a3 · · · · · · an
1 0 0 · · · · · · 0
... . . . ... · · · ... ...
0 0 · · · 1 0 0
0 0 0 · · · 0 0

 .

Theorem 1 Let ai < 0, i = 1, . . . , n be such that eigenvalues of matrix A has
negative real parts, an+1 = − fnn

f1n−1
· an−1

an
and a0 is positive solution of

2a0((2a0)
2ka2n+1 + 22k+1ak0λ

k
min∥a∥an+1 + λ2kmin∥a∥2)− λmin = 0,

where λmin is the smallest eigenvalue of matrix F. Then the control u(x) of the
form (2) transfers an arbitrary initial point x0 to the origin along the trajectory of
the system (1) in some finite time T (x0) and satisfies the preassigned constraints
|u(x)| ≤ 1, x ∈ Rn.
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[1] V. I. Korobov, The controllability function method, R&C Dynamics, M.-Izhevsk, 2007 (in Russian).
[2] V. Korobov and M. Bebiya, Stabilization of some class of nonlinear systems that are uncontrollable to

the first approximation, Dopividi NAN Ukraine (2014), no. 2, 20–25 (in Russian).

An operator analogue of the Bruwier series
Sergey Gefter, Kharkiv, Ukraine

Ann Tanasichuk, Kharkiv, Ukraine

We study an operator analogue of the Bruwier series. This series is used
to solve simple linear homogeneous differential-difference equations in Banach
spaces .

Let E be a complex Banach space, A : E → E be a bounded linear operator
and h ∈ C, h ̸= 0. We call the next formal operator series

+∞∑
n=0

1

n!
An(z + nh)n (1)

by the Bruwier series.
In the scalar case, this series has been studied in detail in [1, 2, 4 ] (see also

[3] , page 180). If h = 0, we obtain the power series for the exponent of a
bounded linear operator.

Theorem 1 Suppose that r(A) is the spectral radius of A. If r(A) < 1
e|h| ,

then the series (1) converges uniformly in any compact, and its sum is an entire
operator function of exponential type σ < 1

|h| .

We now consider the next Cauchy problem{
u′(z) = Au(z + h),

u(0) = u0.
(2)

where u0 ∈ E.

Theorem 2 If ||A|| < 1
2e|h| , then the Cauchy problem (2) has an entire solution

of exponential type for any initial vector u0 ∈ E.

[1] L. Bruwier, Sur l’equation fonctionelle y(n)(x)+a1y(n−1)(x+c)+...+an−1y
′(x+(n−1)c)+any(x+nc) =

0, Comptes Rendus de Congres National des Science, Brulles, 1930, 1931, 91–97; Sur une equation aux
derives et aux differences melees, Mathesis, 47 (1933), 96–105.

[2] O. Perron, Über Bruwiersche Reihen, Math. Z., 45 (1939), 127–141.
[3] R. Bellman, K.L. Cookg, Differential-difference equations. Mathematics in science and engineering, The

RAND corporation, Santa Monica, California, Newyork academic press, London, 1963.
[4] F. Vogl, On the Uniform Approximation of a Class of Analytic Functions by Bruwier Series, Journal of

Approximation Theory, 107 (2000), Issue 2, 281–292.
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Interaction between the two “accelerating-packing”
flows in a gas of hard spheres
Vyacheslav Gordevskyy, Kharkiv, Ukraine

Natalya Lemesheva, Kharkiv, Ukraine

We consider the approximate solutions of the non-linear Boltzmann equation
[1-2], which have the structure of the linear combination of two Maxwellians,
namely f = φ1M1 + φ2M2, where the coefficient functions φi = φi(t, x),
i = 1, 2 are nonnegative and smooth, and Mi have the form [3]:

Mi = ρi ·
(
βi
π

)3/2

· eβi(2uix−v2+2v(vi−uit)).

The purpose is to find such a form of the functions φi(t, x), i = 1, 2 and such
behavior of all hydrodynamical parameters so that the integral error

∆1 =

∫
R1

dt

∫
R3

dx

∫
R3

|D(f)−Q(f, f)| dv

tends to zero.
We find some sufficient conditions to minimize this error and built bimodal

explicit approximate solutions of the Boltzmann equation, where the functions
φi, i = 1, 2 have the form of finite “δ - plateau” [4].

The obtained results form the content of the paper which was sent for pub-
lication.

[1] C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988.
[2] M.N. Kogan The dinamics of a Rarefied Gas, Nauka, Moscow, 1967.
[3] V.D. Gordevskyy and N.V. Andriyasheva, Interaction between ”Accelerating-Packing” Flows in a Low-

Temperature Gas, Math. Phys., Anal., Geom. 5 (2009), no. 1, 38–53.
[4] V.D. Gordevsky, Trimodal Approximate Solutions of the Non-linear Boltzmann Equation, Math. Meth.

Appl. Sci. 21 (1998), 1479–1494.

Homogenized model of diffusion in porous media
with nonlinear absorption at the boundary

Larysa Khilkova, Rubizhne, Ukraine

Let Ω be a bounded domain in Rn (n ≥ 2), F ε be a closed set in Ω depending
on a small parameter ε, so that the set F ε as ε→ ∞ is becoming more porous
and is more dense in Ω. We assume that the boundary of F ε is piecewise smooth.

Consider in Ωε = Ω \ F ε boundary value problem:
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−∆uε = f ε(x), x ∈ Ωε,

∂uε

∂ν
+ σε(x, uε) = 0, x ∈ ∂F ε,

uε = 0 на ∂Ω,

(1)

where ∆ =
n∑
i=1

∂2

∂x2i
is the Laplace operator, ν is the exterior unit normal to the

Ωε; the function f ε ∈ Lq(Ωε),
(
q > 2n

n+2

)
and the function σε(x, s) satisfies the

certain conditions monotonicity and bounded growth.
The problem (1) describes the process of stationary diffusion in a porous

medium with absorption on the walls of the pores F ε.
We study the asymptotic behavior of the generalized solution uε(x) of the

problem (1) as ε→ 0. We prove that uε(x) converges in Lp(Ωε)
(
p ≤ 2n

n−2

)
to

a function u(x) that solves the following boundary value problem
−

n∑
i,k=1

∂

∂xi

(
aik(x)

∂u

∂xk

)
+

1

2
cu(x, u) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

(2)

Here {aik}ni,k=1 is a symmetric positive definite tensor in Rn which describes
the conductivity of the porous medium, cu(x, u) = ∂

∂uc(x, u) and the function
c(x, u) characterizes the absorption properties of the boundary.

On attractors of plate models with strong nonlinear
damping

Stanislav Kolbasin, Kharkiv, Ukraine

The talk is devoted to long-time behaviour of solutions to the Cauchy problem
for the following equation:

utt +D(u, ut) +Au+ F (u) = 0. (1)

The above equation is considered in an abstract Hilbert space H, with oper-
ators A, F , and D(u, ut) (for each u ∈ H) densely defined in H. Also, A here
is positive and self-adjoint, and D(u, ut) maps D(A1/2)×D(Aθ) into D(A−θ)
with 0 < θ ≤ 1/2.

An example of this abstract model can be the plate oscillation equation

utt − div[σ1(u)∇ut] + g(u, ut) + ∆2u+ F (u) = 0 (2)



34 ANALYSIS AND MATHEMATICAL PHYSICS

with locally Lipschitz functions σ1(s) and g(s1, s2) and feedback force F (u)
corresponding to Kirchhoff, von Karman, or Berger plate models (see discussion
in [1]).

The main result in study of (1) is existence of a compact global attractor of
finite dimension, as well as an exponential fractal attractor.

The talk is based on the results of the joint article [1] with I.D. Chueshov.

[1] I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Com-
munications on Pure and Applied Analysis 11, 659–674.

A method for research on polynomial systems
Valery Korobov, Kharkiv, Ukraine

Ekaterina Gladkova, Kharkiv, Ukraine

Let us consider the polynomial system of the form:
n∑
i=1

T ki = Sk, k ∈ I (1)

where I is some set of indexes.
In the case when I = {1, 2, . . . , n} it can be solved by reducing to finding

the roots of the nth-order polynomial equation

tn − σ1t
n−1 + · · ·+ (−1)nσn = 0 (2)

where the coefficients σ1, . . . , σn can be expressed via S1, . . . , Sn by using New-
ton’s identities.

In the work [1] the polynomial systems with even power gaps that alternate
in sign are discussed. Such systems arise in optimal control problems.

The authors investigated the system (1) in the case when

I = {1, . . . ,m,m+ k1,m+ k2, . . . ,m+ kn−m}

where m, k1, . . . , kn−m ∈ N, m < n, 1 6 k1 < k2 < · · · < kn−m < m + 2.
The method for solving of this system that also consists in its reducing to the
polynomial equation (2) is suggested,with the coefficients σ1, . . . , σn being ex-
pressed via Sk, k ∈ {1, . . . ,m,m+ k1,m+ k2, . . . ,m+ kn−m}. The necessary
and sufficient conditions on right-hand sides under which the system has a unique
(up to permutations) solution, infinite number of solutions and does not have
any solution are given.
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The system of equations of the form (1) appears, for instance, in modi-
fied Le Verrier’s problem of finding the eigenvalues of a matrix A by knowing
the traces Sk of matrices Ak, k ∈ I.This is connected with the fact that the
trace Sk equals

∑n
i=1 T

k
i where Ti are the eigenvalues of the matrix A.

[1] V.I. Korobov, A.N. Bugayevskaya, The solution of one time-optimal problem on the basis of the Markov
moment min-problem with even gaps, Mathematicheskaya fizika, analiz, geometriya 10 (2003), no. 4,
505–523 (in Russian).

[2] Y. Wu, C.N. Hadjicostis, On solving composite power polynomial equations, Mathematics of computation
74 (2004), no. 250, 853–868.

[3] D.K. Faddeev, Lectures on Algebra, Nauka, Moscow, 1984 (in Russian).

Approximation properties of the generalized
Fup-functions

Victor Makarichev, Kharkiv, Ukraine

Consider the function f(x) ∈ L2(R) such that supp f(x) = [−1, 1], f(x) is

an even function, f(x) ≥ 0 for any x ∈ [−1, 1] and
∞∫

−∞
f(x)dx = 1. By F (t)

denote the Fourier transform of this function.
Let

fN,m(x) =
1

2π

∞∫
−∞

eitx

(
sin
(
t
N

)
t
N

)m+1

F

(
t

N

)
dt,

where N ̸= 0 and m = 2, 3, 4, . . .. The function fN,m(x) generalizes the
functions Fupn(x) and Fmups,n(x), which were introduced in [1 – 3]. Therefore
we shall say that the function fN,m(x) is a generalized Fup-function.

In this paper we consider approximation properties of spaces of linear combi-
nations of the functions fN,m(x).

Let VN,m be the space of 2π-periodic functions

f(x) =
∑
k

ck · fN,m
(
x

π
− 2k

N
+ 1 +

m+ 2

N

)
, x ∈ [π, π].

Denote by W̃ r
2 the class of functions f ∈ Cr−1

[−π,π] such that f (k)(−π) =

= f (k)(π) for any k = 0, 1, . . . , r − 1, f (r−1)(x) is absolutely continuous and∥∥f (r)∥∥
L2[−π,π]

≤ 1. Let Ex(A,L) = sup
ϕ∈A

inf
ψ∈L

∥ϕ−ψ∥X and also let dN(K,X) =

inf
dim L=N

EX(K,L) be the Kolmogorov width.

Theorem 1 If m ≥ r − 1 and m ≤ N − 2 then there exists such C =

C(r,m,N) that EL2[−π,π]

(
W̃ r

2 , VN,m

)
≤ C · dN

(
W̃ r

2 , L2[−π, π]
)
.
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Correlation intercepts and virial expansion of the
equation of state for µ̃, q-deformed Bose gas models

Yuriy Mishchenko, Kiev, Ukraine
Alexandre Gavrilik, Kiev, Ukraine

Deformed Bose gas models are nonlinear extensions of the standard Bose gas
model and thus have a potential to incorporate in an effective way different fac-
tors of nonideality inherent to real gases or other situations. Let us also mention
that deformed oscillators can be utilized [1] to model composite bosons. Another
type of deformed Bose gas models were applied [2] for thermodynamic descrip-
tion of real gases. To this end, certain thermodynamic or statistical relations
of ideal gas were initially deformed (e.g. by means of Jackson derivative), the
others being deduced as consequences. The trial µ̃, q-deformation, used in the
present work, combines the quadratically nonlinear µ̃-deformation from [1] and
the Arik-Coon exponential q-deformation, applied to incorporate [2] the inter-
particle interaction. This µ̃, q-deformation is characterized by the deformation
structure function φµ̃,q(n) = (1+µ̃)[n]q−µ̃([n]q)2 where [n]q ≡ (1−qn)/(1−q).

For the µ̃, q-deformed Bose gas model, we calculate the deformed analogs of
one- and two-particle distributions ⟨(a†k)r(ak)r⟩, r = 1, 2, and also the 2nd order

correlation function intercept λ(2)(k) = ⟨(a†k)2(ak)2⟩
⟨a†kak⟩2

− 1, where a†k, ak denote the

creation resp. annihilation operators of µ̃, q-deformed oscillator (µ̃, q-boson).
Let us observe that for q > (1 + µ̃)−1 and for −1 < q < (1 + µ̃)−1 we
have two qualitatively different types of behavior. The obtained momentum-
dependencies for the intercepts are compared with experimental data for π-
meson intercepts extracted in relativistic heavy ion collisions. Besides, slightly
different µ̃, q-deformed Bose gas model based on the deformed relation for the
particle number N(φ) = φ

(
z d
dz

)
lnZ (note here the φ-deformed analog φ

(
z d
dz

)
of derivative) was considered [3]. Some arguments were given that the respective
deformed virial expansion Pv

kBT
=
∑∞

k=1 Vk(µ̃, q)
(
λ3

v

)k−1 effectively accounts for
(some) interparticle interaction and the composite structure of particles of a gas.
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Various types of convergence of sequences of
subharmonic functions

Nguyen Van Quynh, Kharkiv, Ukraine

We study the question about connection between the convergence of se-
quences of subharmonic functions in the sense of the theory of generalized func-
tions and other types of convergence.

The convergence of a sequence υn(x) to υ(x) in the space Lp(γ) (γ is some
positive measure in the space Rm) means the following∫

|υn(x)− υ(x)|pdγ(x) → 0 (n→ ∞).

We consider kernel hm(x− y) = ∥x− y∥2−m as a map hm(x− y) : Rm
y →

Lp(γ).

Theorem 1 Suppose that υn(x) is a sequence of subharmonic functions in a
domain G ⊂ Rm that converges as a sequence of generalized functions to a
generalized function w. Then

1) the generalized function w is a regular generalized function that is repre-
sented by a subharmonic function w(x) in the domain G;

2) if µ is the Riesz measure of w, and µn the Riesz measure of υn, then
µ = limµn (n → ∞) (convergence in the sense of the theory of generalized
functions);

3) if β is a positive Borel measure with compact support in G such that the
function b(y) =

∫
hm(x − y)dβ(x) is continuous and the function

∫
hm(x −

y)d|β|(x) is locally bounded, then

lim
n→∞

∫
υn(x)dβ(x) =

∫
w(x)dβ(x);

4) if γ is a positive finite Borel measure with compact support in G such that
the function hm(x− y) : Rm → Lp(γ) is uniformly continuous, then∫

|υn(x)− w(x)|pdγ(x) → 0 (n→ ∞).
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Estimates for Riesz measures of unbounded
subharmonic functions

Liudmyla Radchenko, Kharkiv, Ukraine
Sergey Favorov, Kharkiv, Ukraine

It is well known (see [1]) that if v(z) is bounded subharmonic function in the

unit disk then its Riesz measure µ =
1

2π
△v satisfies the following inequality∫

|λ|<1
(1− |λ|)µ(dλ) <∞. (1)

It is a subharmonic analog of the classical Blaschke condition for zeros of bounded
analytic functions.

There are a lot of generalizations of estimate (1) for analytic and subharmonic
functions growing near the boundary of the unit disk (see [2], [3]) or its part
(see [4], [5]). Particulary, in [5] the polynomial growth was considered.

We investigate the case of subharmonic functions in the unit disk D growing
nearE ⊂ ∂D as an arbitrary function φ. Instead of (1) we obtained the inequality∫

ψ(ρ(λ))(1− |λ|)µ(dλ) <∞ (2)

under some condition on functions ψ, φ and the set E. We also proved that
this conditions are optimal, in a sense.

Further, we extend our results to subharmonic functions in the unit ball in
Rn. Moreover, under additional condition of so-called generalized convexity of
a compact subset in Rn we prove integral conditions on Riesz measure of the
subharmonic function in the complement of this compact.

[1] W.K.Hayman, P.B. Kennedy, Subharmonic functions, Academic Press Inc. (London) LTD, 1976.
[2] J. Garnett, Bounded analytic functions. Graduate Texts in Mathematics, vol. 236, Springer, New York,

2007.
[3] F.A. Shamoyan, On zeros of analytic in the disc functions growing near its boundary, Journal of Contem-

porary Mathematical Analysis (Armenian Academy of Sciences), 18, No. 1 (1983).
[4] S. Favorov, L. Golinskii, A Blaschke-type condition gor analytic and subharmonic functions and application

to contraction operators, Amer. Math. Soc. Transl. (2), 226 (2009), 37–47.
[5] A. Borichev, L. Golinskii, and S. Kupin, A Blaschke-type condition and its application to complex Jacobi

matrices, Bull. London Math. Soc. 41 (2009), 117–123.
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Robust feedback synthesis problem for a system with
two perturbations

Tetyana Revina, Kharkiv, Ukraine

The paper deals with the robust feedback synthesis of a bounded control for
a system with two unknown perturbations. Namely, we consider the system

ẋ1 = (1+p(t, x))x2, ẋ2 = (1+r1p(t, x))x3, ẋ3 = x4, . . . , ẋn−1 = xn, ẋn = u,

where unknown bounded perturbation p(t, x) is continuous with respect to all
arguments. Our approach is based on the controllability function method cre-
ated by V.I. Korobov in 1979 [1]. The robust feedback synthesis problem is to
construct a control of the form u = u(x), x ∈ Rn, such that:
1) |u(x)| ≤ 1;
2) the trajectory x(t) of the closed system, starting at an arbitrary initial point
x(0) = x0 ∈ Rn, ends at the origin at a finite time T (x0, p) < ∞ for any
admissible perturbation d1 ≤ p(t, x) ≤ d2;
3) the control is independent of p(t, x).

Put

F−1 =

(
(−1)2n−i−j

(n− i)!(n− j)!(2n− i− j + 1)(2n− i− j + 2)

)n
i,j=1

,

D(Θ) = diag
(
Θ−2n−2i+1

2

)n
i=1

, F 1 = ((2n− i− j + 2)fij)
n
i,j=1,

S = Θ(FD(Θ)RD−1(Θ) +D−1(Θ)R∗D(Θ)F ).

Theorem 1 Suppose that [d1; d2] ⊂ (d01; d
0
2), where

d01 = max{(1− γ1)d̃
0
1; (1− γ2)d̃

0
2}, d02 = min{(1− γ1)d̃

0
2; (1− γ2)d̃

0
1},

d̃01 = 1/λmin((F
1)−1S), d̃02 = 1/λmax((F

1)−1S), 0 < γ1 < 1, γ2 > 1;

and the controllability function Θ(x) is the unique positive solution of equation

2a0Θ = (D(Θ)FD(Θ)x, x), x ̸= 0, Θ(0) = 0, 0 < a0 ≤
2

fnn
,

and the control is given by u(x) = −1
2b

∗
0D(Θ(x))FD(Θ(x))x.

Then the trajectory of the closed system, starting at any initial point
x(0) ∈ Rn, ends at the point x(T ) = 0 at some finite time T = T (x0, d1, d2)
such that

Θ(x0)/γ2 ≤ T (x0, d1, d2) ≤ Θ(x0)/γ1.

[1] V.I. Korobov, The method of controllability function (Russian), R&C Dynamics, M.-Izhevsk, 2007.



40 ANALYSIS AND MATHEMATICAL PHYSICS

Strong solutions for interactive system of full Karman
and linearized Navier–Stokes equations

Iryna Ryzhkova-Gerasymova, Kharkiv, Ukraine

We consider a model consisting of linearized Navier-Stokes equations on a
bounded 3-D domain and full Karman (Marguerre–Vlasov) equations which de-
scribe a nonlinear shell, placed on a flexible part of the boundary of the domain
occupied by the fluid. The coupling of the equations takes place on the domain,
occupied by the shell. The full Karman model accounts both for transversal and
longitudinal displacements of the shell. In this model we do not account for
rotational inertia of the filaments of the plate. Since an issue of uniqueness of
energy solutions of the system is a challengeing open question (as well as for full
Karman (Marguerre–Vlasov) equations without fluid), we prove well-posedness
of our system in smooth functional spaces and study asymptotical behavior of
strong solutions.

Dissipative magnetic 2D Zakharov system in bounded
domain

Alexey Shcherbina, Kharkiv, Ukraine

We consider the dissipative magnetic Zakharov system in a smooth (2D)
bounded domain Ω ⊂ R2 of the form

iEt +∆E − nE + iE ×B + iγ1E = g1(x, t), x ∈ Ω,
ntt + γ2nt −∆

(
n+ |E|2

)
= g2(x, t), x ∈ Ω,

Btt − γ3∆Bt +∆2
(
B + iE × E

)
= g3(x, t), x ∈ Ω,

(1)

where n(x, t) and B(t, x) = (0, 0, B3(t, x)) are the real functions and E(x, t) =
(E1(t, x), E2(t, x), 0) is a complex one.

If we omit magnetic field B, then the system (1) reduces to the dissipative
Zakharov system. This system has been studied by many authors (see [1] and
references therein).

In the case Ω = Rd for d = 2, 3 the Cauchy problem for the system (1) has
been considered in ([2]). It was obtained local existence and uniqueness results.
Our main result is the global well-posedness of the problem (1) in some Sobolev
type classes and existence of a global attractor.
[1] I. Chueshov and A. Shcherbina, On 2D Zakharov system in a bounded domain, Differential and Integral

Equations, 18 (2005), 781–812.
[2] Boling Guo, Jingjun Zhang, Chunxiao Guo, On the Cauchy problem for the magnetic Zakharov system.

Monatshefte für Mathematik, 170 (2013), 89–111.
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Multidimensional affine umbilical immersions
Olena Shugailo, Kharkiv, Ukraine

The umbilical hypersurfaces (proper and improper affine spheres) are well
studied (see,e.g. [1,2]). The definition of umbilical codimension 2 immersion
can be found in [3]. For immersion of higher codimension we introduce a similar
definition.

Affine immersion f : Mn → Rn+k is called affine umbilical if there is
a transversal distribution Q such that the Weingarten mapping satisfies S :
(ξ,X) 7→ λξ ·X for each ξ ∈ Q, where λξ is a smooth function.

If S ≡ 0 then the immersion is called improper affine umbilical ; otherwise
the immersion is called proper affine umbilical.

Proposition 1 The image of a proper affine umbilical immersion f : Mn →
Rn+k lies on affine hypercylinder with (k − 1)-dimensional rulings based on n-
dimensional centro-affine hypersurface.

Proposition 2 Let f : Mn → Rn+k be an affine umbilical immersion with
induced flat connection. Then it is affinely equivalent to a graph immersion of
a smooth map F :Mn → Rk.

Proposition 3 The image of a proper affine umbilical immersion with locally
symmetric connection lies on affine cylinder over central quadric.

We define a power of the curvature operator R(X,Y ) as in [4] and find
a locally parametrization of a proper affine umbilical immersion with nilpotent
curvature operator.
[1] K. Nomizu, U. Pinkall, On the geometry of affine immersions, Mathematisce Zeitschrift, 195 (1987),

165–178.
[2] K. Nomizu, T. Sasaki, Affine differential geometry, Cambridge University Press, 1994.
[3] K. Nomizu, T. Sasaki, Centroaffine immersions of codimension two and projective hypersurface theory,

Nagoya Math. J., 132 (1993), 63–90.
[4] E. Sakharova, A. Yampolsky, Powers of Curvature Operator of Space Forms and Geodesics of the Tangent

Bundle, Ukr. Math. J., 56 (2004), No. 9, 1231–1243.

On finite element Petrov–Galerkin method for solving
convection-diffusion problems

Sergii Siryk, Kyiv, Ukraine

At the present time, the Petrov–Galerkin method (PGM) in the form of the
finite element method is one of the most successful approaches to the con-
struction of numerical approximations in problems of various physical processes
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investigation. One of the key role of PGM applying for solving convection-
dominated and reaction-dominated problems is the correct choice of the weight-
ing functions which prevents spurious oscillations in the numerical solutions and
stabilizes the numerical solution while maintaining acceptable accuracy. The
option of the weighting functions selection for the integration of one-and two-
dimensional convection-diffusion problems was proposed in [1]. These weight
functions and their multidimensional generalizations were later successfully ap-
plied for the numerical solution of various unsteady convection-diffusion problems
(including cases where the velocity in the convective term changes very quickly,
both in magnitude and direction) as well as for nonlinear equations [2, 3]. Some
generalizations of weighting functions (and corresponding PGMs) were proposed
in [4] as well as a detailed theoretical analysis of the corresponding numerical
schemes. Some new estimates of PGM for steady one-dimensional convection-
diffusion equations were obtained in [5]. The current report presents an overview
and generalization of some results of the papers mentioned above.

[1] N.N. Salnikov, S.V. Siryk, I.A. Tereshchenko, On construction of finite-dimensional mathematical model
of convection-diffusion process with usage of the Petrov–Galerkin method, Journal of Automation and
Information Sciences, 42 (2010), 67–83.

[2] S.V. Siryk, N.N. Salnikov, Numerical Solution of Burgers’ Equation by Petrov-Galerkin Method with
Adaptive Weighting Functions, Journal of Automation and Information Sciences, 44 (2012), 50–67.

[3] O.A. Molchanov, S.V. Siryk, N.N. Salnikov, A Choice of Weight Functions of Petrov–Galerkin Method for
Solving of Two-Dimensional Nonlinear Problems of Burgers’ Type, Mathematical Machines and Systems,
No. 2 (2012), 136–144.

[4] S.V. Siryk, N.N. Salnikov, V.K. Beloshapkin, A Choice of Weighting Functions of Petrov-Galerkin Method
for Solving Linear One-Dimensional Convection-Diffusion Problems, USiM, No. 1 (2014), 38–47.

[5] S.V. Siryk, Accuracy and Stability of the Petrov-–Galerkin Method for Solving the Stationary Convection-
Diffusion Equation, Cybernetics and Systems Analysis, 50 (2014), 278–287.

Hardy inequality and an example of infinitesimal
operator with non-Riesz basis family of eigenvectors

Grigory Sklyar, Szczecin, Poland
Vitalii Marchenko, Kharkiv, Ukraine

The discrete form of Hardy inequality reads that if p > 1 and {ak}∞k=1 is a
sequence of nonnegative real numbers, then

∞∑
n=1

(
1

n

n∑
k=1

ak

)p

≤
(

p

p− 1

)p ∞∑
n=1

apn. (1)

Let H be a separable Hilbert space with norm ∥ · ∥. One of the remarkable
achievements in the spectral theory of C0-semigroups inH was obtained in [1, 2].
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However, one essential question was not considered. Namely, is this possible
to construct the generator of a C0-group with non-Riesz basis family eigen-
vectors? Assume that {en}∞n=1 is a Riesz basis of H and consider the space
ℓ2(∆) = {x = {αn}∞n=1 : ∆x ∈ ℓ2}, where ∆ denotes a difference operator.
We introduce a Hilbert space

H1 ({en}) =

{
x =

∞∑
n=1

cnen : {cn}∞n=1 ∈ ℓ2(∆) ∩ c0

}

with norm ∥x∥1 =
∥∥∥∥ ∞∑
n=1

cnen

∥∥∥∥
1

=

∥∥∥∥ ∞∑
n=1

(cn − cn−1) en

∥∥∥∥. The following theorem

gives a positive answer to the question above.

Theorem 1 Let {en}∞n=1 be a Riesz basis of H. Then {en}∞n=1 is a bounded
non-Riesz basis of H1 ({en}) and the operator A : H1 ({en}) ⊃ D(A) →
H1 ({en}) defined by Ax = A

∞∑
n=1

cnen =
∞∑
n=1

i lnn · cnen, with domain

D(A) =

{
x =

∞∑
n=1

cnen ∈ H1 ({en}) : {lnn · cn}∞n=1 ∈ ℓ2(∆) ∩ c0

}
,

generates a C0-group on H1 ({en}).

The Hardy inequality (1) for p = 2 plays a key role in the proof of Theorem 1.

[1] G.Q. Xu, S.P. Yung, The expansion of a semigroup and a Riesz basis criterion, J. Differential Equations
210 (2005), 1–24.

[2] H. Zwart, Riesz basis for strongly continuous groups, J. Differential Equations 249 (2010), 2397–2408.

A new estimate for the Bishop–Phelps–Bollobás
modulus of a Banach space

Mariia Soloviova, Kharkiv, Ukraine

Let X be a real Banach space, X∗ be the dual of X. Denote

Π(X) = {(x, x∗) ∈ X ×X∗ : ∥x∥ = ∥x∗∥ = 1, x∗(x) = 1} ,

Πε(X) = {(x, x∗) ∈ X ×X∗ : ∥x∥ = ∥x∗∥ = 1, x∗(x) ≥ 1− ε} .

Definition 1 The spherical Bishop–Phelps–Bollobás modulus of X is the func-
tion ΦS

X(ε) : (0, 2) −→ R+, which is determined by the following formula:
ΦS
X(ε) = inf{δ > 0 : ∀ (x, x∗) ∈ Πε(X) there exist (y, y∗) ∈ Π(X)

such that ∥x− y∥ < δ, ∥x∗ − y∗∥ < δ}.
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The function ΦS
X measures how close can a pair (y, y∗) ∈ Π(X) be selected

to (x, x∗) ∈ SX ×SX∗ depending on how close is x∗(x) to 1. This function was
introduced and studied in [2]. In particular it was proved that ΦS

X(ε) ≤
√
2ε.

We obtained, jointly with my scientific advisor Vladimir Kadets, an estimate
of the Bishop–Phelps–Bollobás modulus through the parameter of uniform non-
squareness of X.

Definition 2 The parameter of uniform non-squareness is the quantity α(X) =
2− sup

x,y∈BX

{
1
2(∥x+ y∥+ ∥x− y∥)

}
.

At first, we obtain a stronger version of Phelps theorem [1, page 6].

Theorem 1 Let X be a Banach space with α(X) > α0. Then ∀ε ∈
(0, 2), ∀(x, x∗) ∈ Πε(X) and ∀k ∈ (ε2 , 1) there exist (y, y∗) ∈ Π(X) such
that ∥x− y∥ ≤ ε

k and ∥x∗ − y∗∥ ≤ 2k − 2
3kα0.

This implies the following estimate of ΦS
X .

Theorem 2 Let X be a Banach space with α(X) > α0. Then

ΦS
X(ε) ≤

√
2ε ·

√
1− 1

3
α0 for ε ∈

(
0, 2− 2

3
α0

)
, and

ΦS
X(ε) ≤ ε for ε ∈

[
2− 2

3
α0, 2

)

[1] R.R. Phelps, Support Cones in Banach Spaces and Their Applications, Adv. Math., 13 (1974), 1–19.
[2] M. Chica, V. Kadets, M. Mart́ın, S. Moreno-Pulido, F. Rambla-Barreno, Bishop–Phelps–Bollobás moduli

of a Banach space, J. Math. Anal. Appl., 412 (2014), 697–719.

Methodology of Petrov–Galerkin weighting functions
choice with usage of neural networks for

convection-diffusion problem
Igor Tereshchenko, Kyiv, Ukraine

Most Petrov–Galerkin formulations take into account the spatial discretization
and the weighting functions developed give satisfactory solutions for steady state
problems [1]. Though these schemes can be used for transient problems, there is
scope for improvement. Nowadays, research is being carried out for the selection
of the weighting functions using neural networks [2]. The best result shows SUPG
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[3] discretization with additional terms that provide consistency and improve
the phase accuracy for convection dominated flows. The task of finding these
parameters is resolved also by neural networks. To train the network optimization
techniques used which in turn require the computation of the gradient of the error
with respect to the network parameters.

Finite element approximation of Petrov–Galerkin formulations for convection-
diffusion problem

∂T

∂t
+ v

∂T

∂x
= k

∂2T

∂x2
, x ∈ [0;L], t ∈ [0; t1],

can be represented as

n∑
i=0

ȧi(t)

L∫
0

Ni(x)Wj(x)dx =− v
n∑
i=0

ai(t)

L∫
0

N ′
i(x)Wj(x)dx

− k

n∑
i=0

ai(t)

L∫
0

N ′
i(x)W

′
j(x)dx,

where T (t, x) =
n∑
i=0

ai(t)Ni(x), Ni(x) is a linear basis function [1], Wj(x) is a

weight function of SUPG method [3].
Proposed a neural network in which the neural activation functions correspond

to αj parameters of Wj(x) weight functions, and the weights correspond to
the value of the function T (t, x) in points discretization as Wj(x) = Nj +
αjN

′
j. Such approach adapt the weight function of the solution to the problem

characteristics.

[1] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method. Fifth edition. Volume 3: Fluid Dynamics,
Butterworth-Heinemann, Oxford, 2000.

[2] H. Lee, I. Kang, Neural algorithms for solving differential equations, Journal of Computational Physics,
91 (1990), 110–117.

[3] A.N. Brooks, T.J.R. Hughes, Streamline upwind Petrov–Galerkin formulations for convection dominated
flows with particular emphasis on the incompressible Navier–Stokes equations, Comput. Methods Appl.
Mech. Engrg., 32 (1982), 199–259.
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